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ABSTRACT 

Let G be a semisimple Lie group of rank ~> 2 and F an irreducible lattice. F has two natural metrics: 
a metric inherited from a Riemannian metric on the ambient Lie group and a word metric defined with 
respect to some finite set of generators. Confirming a conjecture of  D. Kazhdan (cf. Gromov [Gr2]) we show 
that these metrics are Lipschitz equivalent. It is shown that a cyclic subgroup of F is virtually unipotent if and 
only if it has exponential growth with respect to the generators of F. 

1. Introduct ion  

Let G be a semi-simple group. By this we mean  that G = FII= i Gi(ki) where for 
i = 1,..., l, ki is a locally compact non discrete field and Gi is a connected (almost) simple 

ki-group. Denote rank G = 21=1 rankkiG/. Each factor Gi=Gi(ki)  has a left invariant 

metric di obtained in the following way: If/~ is archimedean then there is a Gi-invariant 
Riemannian metric defined on the symmetric space Gi/Ki, where Ki is a maximal 
compact subgroup of Gi and we can lift it to obtain a left invariant Riemannian 
metric on Gi. Similarly if ki is non-archimedean the natural (combinatorial) metric 
on the vertices of  the Bruhat-Tits building associated with Gi, can be lifted to a left 

invariant metric di on Gi. We denote dR((gi), (hi)) = 21=1 di(gi, hi), dR is a left invariant 
metric on G. In this procedure di and de. are not unique but de, is determined up to 
Lipschitz equivalence (coarse). We will refer to de` as a Riemannian metric of G and 
sometimes by abuse of  language as the Riemannian metric of G. The metric dR is 

Lipschitz equivalent to 21=1 log(1 + I lg - I l l i )where  each 11" ][i is the norm with respect 
to a fixed embedding of  Gi = Gi(/~) in GLni(ki) for some hi. See (3.5) below. 

Let F be an irreducible lattice of G, i.e., F is a discrete subgroup and F \ G  carries 
a finite G-invariant measure. F is called a uniform lattice if F \ G  is compact. Assume 
F is finitely generated. (This is always the case unless rank G = 1, F is non-uniform 
and char (ki0) > 0 for the unique 1 ~< i0 ~< l for which Gi(ki) is not compact - cf. [Ma], 
[Ve], [Ra2], [Lu] and the reference therein). Fixing a finite set Z of generators of F 
determines a metric dw on F a word metric. This is the metric induced on F from 
the Cayley graph X(F; 2) of  F with respect to Z, i.e., for 7, 7' C F, dw(7, 7') = n if n is 
the minimal integer so that ~-1 ~,, can be written as a word of  length n in Z U E-l .  
Again, a different choice of  generators leads to a different word metric but any two 

such metrics are Lipschitz equivalent. By abuse of notation we will refer to dw as the 

word metric of F. 

The authors acknowledge support from BSF (USA-Israel) MSRI,  University of  Chicago, Hebrew University and 
Tata Institute for some mutual visits which resulted in this collaboration. 
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It is not difficult t o  see (see e.g. 3.2 below) and very well known that if F is 
uniform in G, then dR restricted to F is Lipschitz equivalent to dw. This is not in 
general the case if F is non-uniform. For example for G =  SL2(R), F =  SL2(Z) and (11) 
~/= 0 1 ' one may check that dw(f ,  1) grows linearly while dR(f,  1)= O(logn). 

Our  main  result confirms a conjecture of Kazhdan  (stated by Gromov in [Or2]) 
asserting that for higher rank groups the situation is different. 

Theorem A.  - -  Let G be a semi-simple group and F an irreducible lattice. Then dR restricted 
to F is Lipschitz equivalent to dw provided rank G >/2. 

By Margulis'  arithmeticity theorem ([Ma, Chap. IX (1.11), p. 298]), F is an 
S-arithmetic group in G and G is locally isomorphic to I-[oes G(/a,) where G is a 
connected almost simple group defined over a global field k and S is a finite set of  
places of k containing all the archimedean ones. Our  proof  makes an essential use 
of the arithmeticity of F. It will be interesting to find a purely geometric proof  of 
T h e o r e m  A. We learnt recently that  Margulis found a different proof  of T h e o r e m  A 
which is more  geometric - but still uses the arithmeticity of  F. 

In [Gr2], Gromov proved the special case of Theo rem A, when G = G(R), 
F = G(Z), G is a Q-group of Q-rank one and R-rank >/2. Gromov studied these type 
of problems in the broader context of  distortion of metric spaces. In this terminology 
T h e o r e m  A says that (F, dw) is undistorted in (G, dR). 

Let u E F be a unipotent  element  of infinite order. The  entries of u n (embedded 
in a product  of metric groups) are polynomials in n and hence dR(u ~, 1)= O(logn). By 
T h e o r e m  A, we also have dw(u", 1)= O(logn), namely, u" can be written as a word 
of length O(logn) using the generators of F. This in particular implies that the cyclic 
group (u) has exponential  growth with respect to the generators of F. An element  of 
F with this last property wqN be called a U-element  of 1-'. 

and 7 

l 
Theorem B. - -  Let G = Ill= 1 CJi(ki) be a semi-simple group, F an irreducible lattice in G 
E F. Then ~t is a U-element of  F i f  and o @  i f  the foUowingfour conditions are satisfied: 

(a) For every i = 1,..., l, char (ki) = 0 

0~) For every i = l , . . . , l ,  rankki(G/)/> 1 
l 

(c) r a n k G  =~i=1 rankkiGi/> 2 

(d) V is virtual~ unipotent (i.e., ~ is unipotent for some m > O) of  infinite order. 

One direction of  T h e o r e m  B, i.e., that lattices in rank one groups do not contain 
U-elements is due to Gromov ([Gr2], see 2.18 below). The  other direction is essentially 
a corollary of  T h e o r e m  A, but  our  me thod  of proof  is different: We first prove a 
stronger version of  T h e o r e m  B and use it to prove T h e o r e m  A. 
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The paper is organized as follows: Section 2 is devoted to the definition and 
examples of U-elements in various groups. We show in a constructive way how some 
unipotent elements are U-elements and we also begin the proof of  Theorem B. At the 
end of Section 2 we reproduce Gromov's proof  that the four conditions are necessar~ 
In Section 3 we complete the proof of Theorem B. While section 4 contains the proof 
of Theorem A. 

The results of  this paper (for characteristic zero) were announced in [LMR] 
where a complete proof was given for the special case G = SL,(R) and F = SL,(Z). The  
reader is encouraged to consult [LMR] first, as it avoids some of the technicalities 
which appear especially in Section 4 of the current  paper. 

We would like to thank G. A. Margulis and H. Abels for pointing to us that 
establishing Theorems A and B in the cases of characteristic 2 or 3 requires a more 
careful argument  than the one we gave in an earlier version of  the paper. 

2. U-e lements  

(2.1). - -  Let F = (X) be a finitely generated group generated by a finite set Z. For T E F 
denote by l~(T) the length ofT as a word in Z U Z -1. It is equal to the distance from T to 1 in the 
Cayley graph X(F; Z) of F with respect to Z. 

Assume henceforth that T E F is an element of infinite order. Consider the following 
three properties of  T in F: 

CLI1) lx(T ~) = O (log n). 

(U2) ](T)f-) Bx(n)[ grows exponentially with n, i.e., there exists c > 1 such that for 
all large enough n, the ball of  radius n around the identity in X(F; Z) contains at least 
c" elements from the cyclic group generated by T. 

(U3) lim inf l~ = 0. 
log n 

It is easy to see that for j =  1, 2, 3, Property Uj depends only on F and T but 
not on Z. We say that T E F is a Uj-element OfF if it has property Uj. It is said to be 
a U-elem~t o f F  if it has at least one of these properties. 

We collect here, without proofs, some easy observations on these properties: 

(2.2) Proposition. - -  For j =  1, 2, 3. 

(i) For every 0 ~- r E Z,  T is a Uj-element of F i f  and on~ if  7 r is. 

(ii) Let A be a finite~ generated subgroup of F. I f  T C A is a Uj-element of A then # is a 
Uj-element of F. I f  (F:A) < 0% the converse is also true. 

(iii) Let r : F ~ A be a homomorphism from F to a finit@ generated group A. I f  y E F is 
a Uj-element of F then r(7 ) is a Uj-element of A provided it has infinite order. 
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(2.3) Proposition. - -  (U1) ~ (U2) ~ (U3) 

It seems plausible that the three properties are not equivalent for general finitely 
generated groups, but  we actually do not know any example. It is more  likely that the 
three properties are equivalent in linear groups. It follows from T h e o r e m  2.15 below 
that this is indeed the case for arithmetic groups. 

(2.4). - -  I f  F is a field, an element g E GL,(F) is called virtually unipotent  if  some 
power of  it is unipotent, i.e., i f  all its eigenvalues are roots of  uni~y. 

Proposition. - -  I f  7 is a U-element of  F then for every field F and every representation 
9 : F ~ GL,(F), 9 (7) is virtually unipotent. 

Proof. - -  If  9 (7) is of finite order there is nothing to prove, if not we can, using 
(2.3 iii), replace F by 9 (F) to assume that F is a subgroup of  GLn(F). As F is finitely 
generated we can assume F to be finitely generated. I f  )~ is an eigenvalue of 7 of 
infinite order then it belongs to some finitely generated field k containing F. By [Til ,  
L e m m a  4.1] we can embed  k in a locally compact  field k' endowed with an absolute 
value co so that co 0 ~) :~ 1. 

By replacing 7 by 7 -1 if necessa~, we can assume m(~,) > 1. For 8 E F C GLn(F) 
let I1~11= max  18vl/Iv[ where for v=(xl, . . . ,xr) E If ~, Ivl= maxc0(xi). It follows that 

0 ~5 vE k~ n 1 <~i<~n 

IIv"l] /> c0( ) Let a =  max{llS]] , ]iS-Ill}. For 8 E r w e  have II ll H e n c e  we 
SEX 

conclude that lx(7")/> nlogc0(~,). Thus  7 does not have property (U3) and by (2.3) it is 
not  a U-element.  

(2.5) Corollary. - -  A finitely generated subgroup of  GL(k) where k is a field of positive 
characteristic does not contain any U-element. In particular a finitely generated group having a 
U-element cannot be embedded in a linear group over a field of  positive characteristic. 

Since uniform lattices in semisimple Lie groups do not contain unipotent  
elements we have: 

(2.6) Corollary. - -  I f  F is a uniform lattice in a semisimple Lie group then F does not 
contain a U-element. 

Examples. - -  Let 7=  1 . We check whether  T is a U-element  in various 

different groups: 

(2.7). - -  For F = S/e(Z), 7 is not a U-element. Indeed, take 8 = 1 then and 

(lo = 1 generate a free finite index subgroup A of  F. Thus for Z = {8 2, 7 2 } as a set of 

generators of A, lx(7 2n) =n. So 7 2 is not a U3-element of  A and hence 7 is not a U3-element ofF.  
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Another  way to see this is the following simple lemma: 

(2.8) Lemma. - -  Let F be a finitely generated group acting isometrically on a metric space X 
with a metric d. Assume there exists xo E X and c > 0 such that d(~tnxo, Xo) >>. n �9 c for every 

n E N then y is not a U-element of  F. 

Proof. - -  Let X be a set of  generators for F, for c 1 = max{d(cx0, x0)]~ E Z U Z  -I } 
we have d('~Xo, xo) <~ l z ( f ) . c l .  Hence ~, cannot  have property U3. 

Now, a free group F acts on its Cayley graph which is a tree in such a way 
that every non-trivial element  is hyperbolic and satisfies the hypothesis of L e m m a  2.8, 
hence F has no U-element.  

A similar argument  shows: 

(2.9) Proposition. - -  I f  F is a hyperbolic group (in the sense of  Gromov) then it contains no 

U-element. 

Proof. - -  By [Grl] every cyclic subgroup of  F is quasi-convex which exactly 
means that with F acting on its Cayley graph and y G F, the assumptions of (2.8) are 
satisfied with x0 = 1. 

( ~  1 )  
Back to our y =  1 . For a square-free integer, 0 ~ d E Z, the group 

SL2(Z[x/-~-d]) is a non-uniform lattice in SL2(G) which is not a hyperbolic group in the 
strict sense of  Gromov (e.g., it contains Z x Z). It is however a special case of lattices 
considered in T h e o r e m  2.18. In particular we have: 

('o ') (2.10). ~/= 1 is not a U-element in SL2(Z[v/Z--d]). 

O n  the other hand: 

(; 1) 
(2.11). ~I = 1 is a Ul-element of  SL2(Z[1/p]) for every prime p. 

Indeed,  let n G N write n in base p2 as: 

m ~ r  
n - i= oa/p 2' where r = O (log n), and  0 ~ ai <~ p2 1. 

In "H6rner  expression" it is written as: 

(8) . . _p2  (...p2(p2(arp2 + ar_l ) "t- a r _ 2 ) +  ... + a l )  + 00 0. 
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( P 0 )  then (1  1)[3-~ ( 1 P 2 x )  and so by (,): J3= p01 EF,  13 0 = 0 1 Let 

7 n-"  (10 ~)-~Q'"~(([~(~(~lar)~ar-l)'ar-2)'"Tal) "~faO) 
where ~w denotes [3w[3 -1. This shows that 7" can be written as a word of length 
O (logn) using 7 and [3. Hence 7 is a Ul-element of SL2(Z[1/p]). 

(; 1) 
(2.12). 7 = 1 is a Ul-element of SL2 (Z [v/d]) when 2 ~< d E Z and square free. 

The proof is similar to (2.11) with one difficulty: The diagonal subgroup of 
SL2(Z[v/--d]) contains, by Dirichlet unit theorem (cf. [Ja]), an element of infinite order, 

say ~= 0 b -1 , b E Z[x/--d]* with Ibl > 1. This element does not normalize the 

cyclic group generated by 7 -  but rather the upper unipotent rank two free abelian 
group A containing it. 

Embed F into SL2('R) x SL2(R) by sending 7 E F to (7, 7 ~) where ~ is the non- 
trivial element of the Galois group Gal(Q(v/-d)/Q). The abelian group A is now a 
discrete cocompact subgroup in the two dimensional real vector space: 

v={((10 :)(: 
A subset W of a metric space (Z, d) is called a syndetic subset if there is a constant C 
such that for every z E Z there is a w E W with d(z, w) < C. We will show that by 
using a finite subset Z' of F we can find a syndetic subset W of R 2 contained in A 
and such that every w E W can be expressed as a word in l~' of length O(log d(w, 0)) 
where d is the euclidean distance in R 2. This will suffice since the discreteness of A in 
R 2 implies that there exists a finite subset al, ..., ar E A such that every a E A there is 

1 ~< i ~< r such that a ai -1 E W. Hence every a E A can be written as a word of length 
O(logd(a, 0)) in Z = E ' U  {al,...,ar}. Since d ( f ,  0)=O(n). This will prove the desired 
result. 

To get the syndetic set W: fix y0 E A, let 

k i W , :  {-t-Zi:ori[3 .Yo l r iE  N ,  O <<. ri < lbl 2} 

W2= {- t -Z~_ori[3-i 'Yolr iEN, O<<.ri <]bl 2} 

and W=W1 + W2 (where ~i "y0 denotes the action of [3 i on y0 - this is done by a 
conjugation within the group F). This is indeed a syndetic set: 13 acts on V with two 
real eigen-values ~ and ~-1 with say I~l > 1. Let Vl(resp :V2) be the eigen-space 
corresponding to ~.(resp :~-1). V1 and V2 do not contain non-trivial points from A 
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- the integral lattice - but Wt(resp : W 2 )  is contained in Nc(V1)(resp :No(V2)) - the 
c-neighborhood of V1 (i.e., Nc(Vi) - {y E V ] dist (y, Vi) < c}, for some c > 0). Moreover 
Wi is a syndetic subset of Nc(Vi) and using "H6rner  expression" as in (2.11) we see 
that every element w of Wi can be expressed as a word of length O(dist(w, 0)). As 
V = Vl + V2, we deduce that W = W1 + W2 is syndetic in V and also its elements can 
be expressed efficiently. 

More generally: 

(2.13). - -  Let ~ s  be a ring of S-integers in a number field k, i.e., S is a finite set of  (1 ~ 1) 
valuations containing all the archimedean ones. Then T= 1 E SL2(~s) is a U-element, i f  

and only if IS[ > 1 (i.e., i f  and only i f  O s  has infinitely many units). 

Note that IS[ = 1 if and only if either ~ s  = Z or O s  is the ring of integers in 
the quadratic imaginary field O~x/-~---a~. (2.7) and (2.10) covered these cases. The proof 
of (2.13) follows the pattern of (2.11) and (2.12) - b u t  one remark is in order: 

The action of diagonal subgroup of SL2(~s) on the upper unipotent group 
is expressed by the action of ~ on O s  where O s  is embedded as a lattice in 
V = lives k~ where kv is the completion of k with respect to v. As in (2.11) and (2.12), 
we want a syndetic subset of V of elements of ~ s  which are efficiently generated. 
There is however one difference: V decomposes into eigenspaces isomorphic to the 
fields kv. k~ can be either a p-adic field, R or C. 

The first two cases are treated as in (2.11) and (2.12). For the last case, a crucial 
observation (implicitly in ['-Fh]) is that for every )~ E C, with [~.[ > 1, there exists a 
finite set D = {0, 1 ,2 ,  ..., N} such that the set of sums ZT= 0 di ~ i  di E D is a syndetic 
set in C. Using this, (2.13) is proved in a similar way to (2.11) and (2.12). We omit 
the proof as this is a special case of Theorem 3.7 below. 

For the last example of this section, think of SL2(Z) as embedded in the upper 
left corner of SLk(Z). 

(1 ,) 
(2.14). T= 0 1 is a Ul-element ofSLk(Z)Jbr k/> 3. 

To prove this 

two d i m e n s i o n a l s p a c e A =  { (  i 

another copy of 

it dearly suffices to show it for SL3(Z). Now, y is inside a 

1 which is acted upon via conjugation by 
0 

{(1 ~ i) a } SL2(Z)~ 0 a b , c , d ( S Z ,  a d - b c = l  . 
0 c 
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By taking ~(and 13 -1) in SL2(Z) with eigenvalues X and ~-1, _ with 1~] > 1, we can 
get an efficiently generated syndetic subset of A. As before this makes 7 a U 1-element. 

The  next theorem, which is the main  result of this section, generalizes all the 
above examples. 

Let G be a semi-simple group. By this we mean  that G = 111___ 1Gi(ki), where 
for every i=  1, ..., l, /q is a local field and G i is an almost simple ki-group. Rank  G 

is defined as Y]I=I rankk~Gi where rankkiGi is the dimension of  the maximal  k/-split 
torus of Gi. An element of G is unipotent if all its components  are unipotent,  i.e., act as 
unipotent  elements on the Lie algebras associated with the Gi-s. A discrete subgroup 
F of G is called a lattice if G / F  carries a finite G-invariant measure. It is an irreducible 
lattice if, for every i, the projection of  F to Gi = Gi(ki) is dense there. 

(2.15) Theorem. - -  Let G 1-I~: 1 Gi(ki) be a semi-simple group, F an irreducible lattice in 
G and 7 E F. Then 7 is a U-element in F i f  and on~ i f  the following four conditions hold: 

(a) For every i = 1,..., l, char (/~) = 0. 

0o) For every i = 1, ..., l, rank ki(Gi)/> 1. 

(c) r a n k G  = ~ rankki(Gi )/> 2. 
(d) 7 is a virtual~ unipotent element of infinite order. 

(2.16) Remarks. 

(i) We are actually proving in the theorem that 7 E F is a U 1-element iff U2- 
element iff U3-element.  

(ii) In fact, if (c) and (d) of  the theorem hold then 7 is a U-element  from which 
one can easily deduce that  (a) and (b) also hold. 

(iii) Note that the existence of a non-trivial unipotent  (or U-element) in F implies 
that F is a non-uniform lattice in G. 

(2.17) Proof of(2.15).  - - D e n o t e  by ri the projection from G to Gi(k~). 

Let 7 E F be a U3-element.  Assume rank (G) = 1. This means that except for one 
factor, say Gl(kl), all other factors are compact.  The  projection rl(1-) is therefore still a 
lattice in Gl(kl) and K e r r 1 N F  is finite. Thus  q(7) is a U3-element  there. Assume kl is 
a non-archimedean field, then rl(F) acts discretely on the Bruhat-Tits tree T associated 
with Gl(kl). The  element rl(7) is of infinite order and hence acts on T as an hyperbolic 
element (cf. [Se, Proposition 24, p. 63]), i.e., there exists a vertex x E T for which 
d(rl(y)"x, x )=mn for some fixed m E N and every n E Z. By L e m m a  2.8, rl(~), and 
hence 7, is not  a U3-element.  Thus  kl must  be archimedean.  This  means that G~(kl) 
is a simple rank one real Lie group. T h e o r e m  2.18 below shows that in this case also 
there is no U-element.  We therefore conclude that rank G >/2. This proves (c). Now, 
let J c { l, ..., l } -  L be the subset of  indices for which Gj(/~-) is compact .  T h e n  the 
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projection of F to 1-IiEL~J Gi(k4) is a lattice there and r n 1-Ira %(#) is finite. From a 
well known theorem of Margulis [Ma, Theorem 4.10] we deduce that every normal 
subgroup of F is either finite or of finite index in F. For j E J ,  Gj(/~-) does not contain 
unipotent element of infinite order hence by Proposition 2.4, Ker 5 is of finite index, 
so 5.(F) cannot be dense in Gj(/9). This proves that J =  0, i.e., (b) is proved. A similar 
argument now proves also (a) using Corollary 2.5. (Note that a lattice in a higher 
rank group is always finitely generated - see [Ra2] and [Ma]). (d) follows immediately 
from (2.4). 

Assume now (a) - (d). By Margulis arithmeticity theorem []Via, p. 298] F is an 
S-arithmetic group, i.e., there exists a number field k, an almost simple k-group G, a 
finite set S of valuations of k containing S~ - the archimedean ones, such that F is 
commensurable with G(Gs) where 

O s  = {x  E k I Ixlv ~< 1 for every v ~ S}. 

Theorem 3.7 below (whose proof occupies Section 3) proves that every unipotent 
element in such an S-arithmetic group is a Ul-element. This will complete the proof 
of (2.15). 

We close this section reproducing the proof of the following theorem of Gromov 
[Gr2, w 

(2.18) Theorem. - -  Let G=G(F),  where F is a local field of  characteristic zero, G is a 

F-rank one semi-simple group. Let F be a lattice in G and ~t E F. Then ~ is not a U-element 

o fF .  

Proof. - -  If F is non-archimedean, F has a non-abelian free subgroup F' of finite 
index, U can be realized as a lattice in SL(2, R). If F = C, G is locally isomorphic 
SL(2) so that G - SO(3, I)(R) locally. Thus we can assume F =  R. Let X =  G / K  be 
the symmetric space associated with G, where K is a maximal compact subgroup of 
G. If F is cocompact, (2.6) gives the result. So assume F is non-uniform. By [GR] 
(see also [Ral]), F \ X  has finitely many cusps and we can choose in a F-equivariant 
way disjoint open horoballs B~ in X, such that X0 = X \  U B~ is F-invariant and F\X0 

is compact. Let ~ be the path metric of X0, i.e., for a, b E X0, "~(a, b) is the length 
of the shortest (with respect to the original metric d of X) path in X0 between a 

and b. F preserves ~. Fix some x0 E X0. For any 7 E F of infinite order we have 

~(~x0, x0)/> v/-nc for some c > 0. Indeed either 7 is hyperbolic and the assertion follows 
for c equal the minimal translation of ~/in X (here we get >/nc) or y preserves one of 
the horospheres, 0B~, forming the boundary of X0. By the Iwasawa decomposition, 
G = N A K ,  there exists a retraction q~ : X0 ---+ 0B~, geometrically we map x E X0 
to the point of intersection of 0B~ with the geodesic ray from x to the point of 
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infinity of the horosphere 0B~. It follows, from the negative curvature of X that 

~l(~(x), ~(y)) <~ ~(x,y) where d is the path metric of 0B~. Observe that the retraction q~ 
is F~-equivariant where Fa < F is the subgroup preserving 0B~. As ~ E Fa it follows 

that ~('~x0, x0) /> d(q0('~ x0), q0(x0))= d('~g)(x0), q~(x0)) >/ v/-nc. The last inequality holds 
since the metric d induces on (a torsion free finite index subgroup ot) F~ via the map 
Fa ~ F~q~(x0) is equivalent to the word metric of F~. Fa is a virtually nilpotent group 
of class ~< 2. In such a group, for ~ of infinite order dw(~, iar v/-nc for some c > 0. 
It follows from an obvious variant of 2.8 that 3/is not a U element. 

(2.19) Remark. - -  When F is not of characteristic 0, non uniform lattices in G 
are not finitely generated and hence the notion of a Uj element has no meaning. 

3. Unipotent Subgroups 

(3.1). - -  The goal of this section is to establish Theorem 3.7. This theorem 
completes the proof of Theorem 2.15 above. It also plays a central role in the proof 
of Theorem 4.1 below. 

We start with some generalities concerning the relation between the word metric 
on a group F acting on a space X and metrics on this space. 

D~finition. - -  A metric space ~ ,  el) is called a coarse path metric space /f there exists 
a constant Ko such that for every pair of points x , y  E Y we have 

l~n--1 E E Y,  Ko } d(x,y)= i n f l  ~_od(Xi, Xi+l) l N,  xo =x, x, =y, xi d(xi, xi+t) <~ . 

In what follows ~ ,  d) will be called a path space /f it is a coarse path metric space and closed 
balls of finite radius are compact. 

The following proposition - at least in a weaker form - is part of folklore. 

(3.2) Proposition. - -  Let A be a finitely generated group acting properly discontinuously via 
isometrics on a path space ~ ,  d). Assume that A\Y is compact. Let dA be a fixed leJ? invariant 
word metric on A. Let yo E Y be such that StabA(y0)= {e}. 14~ can embed A in Y via the map 
A ---+ Ay0. Then the pullback of the restriction of d to Ay0 is Lipschitz equivalent to dA. 

Proof. - -  Let Z C A be a finite symmetric set of generators. Define 
C1 = max{d(yo, ~y0) I ~ E Z}. Clearly for every )~ E A we have d(y0, )~y0) ~< Clgy~()~) 
where g~(~) is the length of )~ with respect to the generators l~. Note that g~(~) is 

equivalent to dA0% 1). Let Y =  U ,~ '~  be a tessellation of Y by fundamental domains 
~,EA 

such that Y0 E ~ and for every ~ E A, ~ =  ~ '~.  Since the action of A is properly 
discontinuous and A\Y is compact any compact subset of Y is contained in the union 
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m 

of finitely many fundamental  domains. Since ~ is compact it follows that any ball of  
radius 2K0 in Y is contained in a translate by some (~ E A of  the union of  a fixed set of  
No fundamental  domains for some fixed No E N. (K0 is the constant used in the defini- 
tion of  a coarse path metric space). Given e ~: )~ E A, letyl  ,Y2, --.,yn = ~,Y0 be a sequence 

n - - t  

of  points in Y such that ~i=0 d(yi,Yi+l) <. 2d(y0, ~,Y0) and K0/2 ~< d(yi,yi+l) ~< 2Ko for 
0 ~< i ~< n - 1. (Without loss of generality d(y0, ~,Y0)/> K0/2). Each Yi, 0 <<, i <~ n belongs 
to some ~qT0i , 0i E A. Since d(yi-l ,yi)  < 2K0 it follows from the observation above that 

-1  
ri = 0i_l 0i, 1 ~ i ~< n, belongs to a fixed finite collection of  elements of  A. It follows that 

= rlr2...rn gives a word of length ~< C2 d{y0, ~,Y0) representing ~. 

(3.3) It is well known that a metrizable locally compact group G carries a 
left translation invariant metric d. In general (G, d) need not be a coarse path- 
space. However if G is compactly generated, G does carry a metric ~ such that 
(G, 5) is a path space. This is seen as follows: Let t l  C G be a symmetric compact 
neighbourhood of  e in G which generates G. An ~l-coarse path in G joining x , y  in G 
is a finite sequence g =  (go, gl, ...,gn--1, gn) in G with go = x, g, =y  and g~lgi+ 1 E ffl. Since 
t l  generates G, there is a tl-coarse path joining any two points of  G. For x , y  E G, 
set da(x,y)= inf{~0.<i< . d(gi, gi+l)[ g = (go, ...,g,), a ffl-coarse path joining x andy} .  We 
assert that closed balls of  finite radius for the metric da are compact (that da is a 
metric compatible with the topology is easily seen). This is seen as follows. Since da is 
left translation invariant, we need only consider bails of  finite radius around e. Let then 
da(e, x) ~< M for some x E G. There  exists a coarse tl-path g = ( g o , g l , . . . , g , ) j o i n i n g  e 
and x such that 

E d(g i,gi+l)<~M+ 1. 
O<~i<n 

Let a > 0 be such that the open ball of  radius a around e is contained in tl. Now we 
can find a subsequence hi=gri, 0 <~ i <<. m, of  (go, ...,gn) such that the following holds: 
let h~+ 1 =gri+~--l; then d(hi, h'i+l) < a for 0 ~< i < m while for 0 ~< i < m - 1, d(hi, hi+l) >/a. 
Evidently then 

E d(hi, hi+l)<~ E d(gi, gi+t) <~M+ 1. 
O<<. i<m 04i<n 

-1  
It follows then that h i hi+l E Be(e;a)~, where Be(e;a) is the closed (compact) ball of  
radius a with respect to the metric d around e and t l  is the closure of ~.  It follows 
in particular that ( m -  1)a ~< (M + 1) so that ( m -  1) ~< (M + 1)/a. If  we now set 

N =  [(M + 1)/a] + 1, we see that x belongs to (Be(e; a)~) N, a compact set. Since x is 
an arbitrary element of  the ball of  radius M in the metric dn, we see that this last 
ball is compact. We thus conclude that G carries a left invariant metric such that 
closed balls of  finite radius are compact. Since da(x,y)= d(x,y) for x-ly E t l  one has 



16 ALEXANDER LUBOTZKY, SHAHAR MOZES, M. S. RAGHUNATHAN 

da(x,y) = inf{Y]~o.<i< . dn(xi, xi+l) I Xo = x, x, =y,  x i ~ G,  x~ lx i+I  ~ ~"~}. Let Ko > 0 be such 
that da(1, x- ly)=d(1,  x-~y) ~< Ko for x-~y E n .  T h e n  since da(x,y) <~ 2o<.i<ndn(xi, xi+l), 
for Xo = x, x. =y,  da(xi, xi+l) ~< K, we see that 

da(x,y) <. inf{ ~ d(xi, xi+~) l xo=x,  x .=y ,  da(xi, Xi+l) ~< Ko} 
O<~i<n 

~< inf{ y ~  d(xi, xi+l) l xo=x,  x .=y ,  x[-lxi+l E f~} =da(x,y)}  
O<~i<n 

it follows that da is a path space metric. 

( 3 . 4 ) .  - -  Next we turn to show that a metric d, such that (G, d) is a path space, 
is unique up to "coarse Lipschitz equivalence", i.e. suppose that dl, d2 are metrics on 
G such that (G, di), i=  1,2,  are coarse path spaces. T h e n  we claim that for any open 
neighbourhood V of  e in G, there is a constant C > 0 such that for x ~ V 

dl(e, x)/d2(e, x) < C. 

This is seen as follows. Let B2 be a ball for the metric d2 such that the following holds: 

d~(x,y) = inf{~0~<i<, d2(gi, gi+l) I g =  (go, gl, ...,gn) a B2-coarse path in G from x to y}. 
Let c > 0 be a constant such that the closure of the open ball B~ of  radius c around e 
is contained in the interior of  B 2. Let (go, ...,gn) be a B2-coarse path from e to x such 
that d2(e, x) >>. ~0<l<, d2(gi, g i+l)-  1. Passing to a subsequence we may assume that 

--1 d2(gi, gi+l) >1 c for 0 ~< i < n -  1, while for 0 ~< i ~< n -  1 we have gi gi+l belongs to 

B~2B2. By compactness and continuity there exists a constant m < 1 such that for all 

z E B2\B~, we have d2(e, z) >>- m dl(e, Z). Let A =  diamdl(B'2B2). We have 

dl(e, x) <~ Z dl(gi, gi+,) 
O<~i<n 

<<. m- '  ~_, ag(gi, gi+,) + a,(g,_,,  g,) 
O<~i<n-- 1 

<<. 

~< 

It follows that for some 
d2(e, x) >1 b'dl(e, x). Using 

m-'  ~ d2(gi, gi+,) + A 
O<~i<n 

m-ld2(e, x) + m -1 + A. 

large enough b there exists b' > 0 so that if dl(e, x) > b, then 
the compactness of Bd~(e; b)\V one concludes then that 

d,(e, x) <. Cdz(e, x) for all x r V 

proving our contention. 

The  uniqueness up to coarse Lipschitz equivalence leads us to denote any path 
space metric on the metrizable compactly generated locally compact group by d~. 
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Observe that when G is discrete, it is finitely generated and our notation is consistent 
with the one used for the word metric on discrete groups. 

(3.5). - -  Consider  now the case G =  1--[l<~i<~nGi where each G i  is the group of 
ki-rational points Gi(ki) of a reductive algebraic group Gi over the local field ki. T h e n  
one sees that  the product  metric I'Ii<~i<~gdGi o n  G is a path space metric. Suppose 
now that we have a realization Gi ~ SL(ni) of  Gi as a ki-subgroup of  SL(ni) so that 
Gi C SL(ni, k). O n  SL(ni, k), we have a natural  left-translation invariant metric 8i defined 
by 8i(x,y) log (1 + ] ]x - l y -  I[D where for a matrix A =  {Ars}l<~r,s<~ni, ]]A][ = max{[Ara ] 
1 ~< r, s ~< ni}, with l" [ denot ing the absolute value in ki. We assert that  8[G is coarse 
Lipschitz equivalent to do (in particular we see that 8 is coarse Lipschitz equivalent 
to dl- I sI4ni, ki))" In other words given a ne ighbourhood  U of 1 in Gi there is a constant 

C > 1 depending  on U such that  for all x E Gi\U,  one has 

(*) C -~ log (1 + [ l (x-  1)ID ~ dG(1, x) ~ C log (1 + II(x- 1)ll). 

This is seen as follows. It is well known that if D is a maximal  k/-split torus in G i  

and D = D(ki), then there is a compact  subgroup K C Gi such that  Gi = K.D.K [BT]. 
It is immediate  from this that  the problem is reduced to the case when Gi  = D, a 
case which is checked easily - D  is a direct product  of copies of k~; note also that 
we have assumed that Gi C SL(ni) - (*) does not for instance hold for G = G L ( 1 )  
in GL(1). One  may  also reformulate the inequality (.) to say that if G =  [Ii<.i<.t Gi, 
G ' =  1-Ii<.i<.e G'i are two groups with Gi C_ Gri reductive algebraic groups over ki and 
G i=  Gi(ki) (resp. G I =G~(k/)) then dG,[G is coarse Lipschitz equivalent to de. I f  ki is 
archimedean (resp. non archimedean) let Xi denote the symmetric space (resp. Bruhat- 
Tits building) associated to Gi.  Let 8i denote the symmetric Riemannian  (resp. the 
combinatorial) metric on Xi. Suppose now that ki is non-archimedean and x E Xi 
is any point  and f :  Gi ~ Xi is the orbit m a p f ( g ) = g x .  If  D C Gi is a maximal  
diagonalizable group and x is in the apar tment  de te rmined  by D, it follows from the 
definition of the metric on Xi, that  there are positive constants C1, C2 such that 

(**) Cldi(e, g) <. 8i(x, gx) <. C2di(e, g) 

for all g E D with di(e, g) sufficiently large, di being a path  space metric on Gi. Using 
the decomposi t ion G = K D K  with K a compact  group one sees that (**) holds (with 
perhaps different C1, C2) for all g E Gi with di(e, g) sufficiently large. When  ki is 
archimedean a maximal  connected diagonal group under  the orbit map  for a suitable 
x C Xi maps diffeomorphically onto a totally geodesic flat space and then the metric 
induced by this diffeomorphism is up to a scalar the same as the Riemannian  metric 
induced from Gi. Thus  the path space metric distance in Gi is closely related to the 
distance in the Bruhat  Tits building or the symmetric space as the case may  be. In the 



18 ALEXANDER LUBOTZKY, SHAHAR MOZES, M. S. RAGHUNATHAN 

sequel, we will always consider only left invariant metrics on G that make it a path  
space. 

(3.6). - -  Suppose now that G is as in (3.5), i.e., G = 1-I]<~i<~e Gi with Gi = CTi(ki) 

where for 1 <~ i <<. g, ki are local fields and 13i a r e  almost ki-simple linear algebraic 
groups over ki. Let F be an irreducible lattice in G, i.e., F is a lattice such that the 
image of  F in G / H  is not discrete for any closed non-compact  normal  subgroup H. 
T h e n  if ~-]~l<~i<~g ki-rank G/> 2, according to a theorem of Margulis [Ma, Chapter  IX], 
F is necessarily arithmetic. More  precisely, there is a global field k, a finite set S 
of  valuations of  k which contains all the archimedean valuations of  k, an absolutely 
almost simple (simply connected) algebraic group (3 over k and a h o m o m o r p h i s m  

f :  1-IvesG(k~) ~ G such that Kernel  f is compact ,  image o f f  is a closed normal  
cocompact  subgroup of G and f (13 (Os )  ) and F are commensurable  : here ~ s  is the 
ring of  S integers in k and 13(~s)(=G(k)93 GL(n, Gs )  for some realism of  13 as a 
k-subgroup of GL(n) for some integer n > 0). Because of this theorem, one sees that 
one needs only to deal with S-arithmetic groups in absolutely almost simple groups 
over global fields. We now formulate the central result of this section in the framework 
of S-arithmetic groups. 

(3.7) Theorem. - -  Let G be a connected simply connected absolutely almost simple linear 
algebraic groups over a global field k. Let S be a finite set of valuations of k including all the 
archimedean valuations. Let F C G(k) be an S-arithmetic subgroup and U the unipotent radical of  
a (proper) k-parabolic subgroup of G. Assume that ~ves  k~-rank G/> 2. Let G = l-I~esG(k,); then 
dG Ivnr and dr Ivnr are Lipschitz equivalent. 

(Note: U : ~  {1} can happen  only if k-rank G > 0; also for v E S, kv is the 
completion of  k at v). 

Terminology. - -  Given a discrete subgroup O of  a group G, a metric dl on O and 
a metric d2 on G we shall say that O is (d], dz)-undistorted if dl and d2 restricted to O 
are Lipschitz equivalent. 

(3.8) Corollary. - -  Every unipotent element of  infinite order in F is a Ul-element. 

Proof. - -  Let u E F be a unipotent  e lement  of infinite order. T h e n  char k=  0 
and u belongs to the unipotent  radical of  some k-parabolic subgroup of  G. According 
to (3.7) we then have dr(l ,  u") ~ do(l ,  u"). O n  the other hand  the matrix entries of u" 
are of the form P0(n) where P,) are polynomials with coefficients in k. It follows now 
from (3.5) that  d(1, u")= O (log n). Hence  the corollary. 

(3.9). We fix the following notation for the rest of this section. G will be a 
reductive algebraic group over k. We will always consider G as a k-subgroup of  a 



THE WORD AND RIEMANNIAN METRICS ON LATTICES OF SEMISIMPLE GROUPS 19 

fixed GL(n). ~ s  will be the ring of  S-integers in k and 13(~s) = 13 I-1 GL(n, Os).  The  

"standard" norm III iv on M(n, ko) is defined as Ilgll0-- sup{Ig01o I 1 ~ i , j  <~ n} where 
g E M(n, k0) and go are the entries ofg. We fix once and for all a maximal k-split torus 
T in 13 and denote its centralizer in 13 by Z(T). T h e n  Z(T) is a reductive k-subgroup 
of 13 whose commutator  subgroup M = [Z(T), Z(T)] is a semisimple subgroup defined 
over k. The  group is an almost direct product T.13.M where 13 is a torus in Z(T) 
defined and anisotropic over k. The  following lemma will enable us to choose in M 
a maximal torus D defined over k such that for every v E S, D contains a maximal 
k0-split torus and D is anisotropic over k. 

(3.10) Lemma. - -  Let Z be any finite set of  places of  k. Suppose that we are given for each 

v E Z a maximal torus Do of  M d~fined over ko. Then there is a maximal torus D over k in M 

such that D is conjugate to Do by an element M(k0)for all v E Z. Moreover D can be chosen to 

be anisotropic over k. 

Proof. - -  Let D0 = D0(k0) and DIv the open set of  regular elements in Dv :g  E D' o 
iff the centralizer of  g in M has Dv as the identity connected component.  Consider the 
map %0 : M0 x D0 ~ G0 (where G0 = 13(k0)) given by (g, t) H gtg-' .  Then  it is well known 

- and easy to see that each )~0 is of  maximal rank in the open set M0 x D~o and hence 
the image of this open set in M0 is an open subset ~0 in M0. It follows that if g E f~0, 
the identity connected component  of Z(g), the centralizer of  g in t3, is conjugate to 
Do by an element of Go. Now by a well known theorem due to Kneser [Kn], M(k) is 
dense in My. = 1-Ioe~Mo. It follows that there is an element g E M(k) N I-[oes ~o- To prove 
the first assertion we need only take D to be the identity connected component  of the 
centraliser of  g in 13. The  second assertion, that D can be chosen to be anisotropic 
over k, is seen as follows: Let w be a non-archimedean valuation of  k not in Z. Let 
Z' = Z U {w}. For each v E Z choose a maximal torus Do over ~ containing a maximal 
k0-split torus. Let Dw be a maximal torus in G anisotropic over kw (such a Dw exists - 
see ([PR] Theorem 6.21)). We have seen that there is a maximal torus D in G defined 
over k and such that D is conjugate to Do by an element of Go for all v E I?'. Since 
Dw is anisotropic over kw, D is anisotropic over k. 

(3.11). - -  Fix now a maximal torus D in M anisotropic over k which contains 
a maximal kv-split torus for every v E S (such a D exists by Lemma 3.10). Then  

T = T . 1 3 . D  is a maximal torus in G. Let Tl =T.13. We introduce lexicographic 

orderings in the character groups X(T), X(T~) and X('I') compatible with the restriction 

maps: )~ E X(T) is positive if its restriction to Tl (resp. T) is positive. In the case when 
ISI = 1 so that S =  {v} a single valuation, we will require more of  this ordering. To 
formulate this requirement, we fix a maximal k0-split torus (3' C 13 and a maximal 
k0-split torus D' C D. Let Tll = T.13' and T~ =T.131D'. We demand that there are 
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orderings on the character groups Ttl and T~ as well such that the restriction maps 
induced by the inclusions 

T c T '  1 c T 1 C T ;  C ' I '  

are compatible with the orderings. We deno teby  �9 (resp. ~) the k-root - (resp. absolute 
root) - system of (3 with respect to T (resp. T). Let A (resp_A) be thesystem of simple 
(resp. simple absolute) roots of Ca with respect to T (resp. T). If ~ E A, and [3 iT ~: 0, 
then 13 IT = c~ E A. For ~x E A, let ~ = {[3 E A [ [3 iT = c~}; then ~ :~ ~. For q0 E ~,  there 
is a unique 1-parameter unipotent subgroup U(q0) (over ks) in G normalized by T and 
such that the Lie algebra ~/e~(q0)) of U(q0) is precisely the eigen-space corresponding 
to q) for the torus T. For q0 E ~, we denote by U(q0) the k-subgroup generated by 
{U(lII) [ V iT is of the form ~0 or 2(I)} (2(t) can be a k-root). U(~0) is a unipotent k- 
subgroup. If 2(I) is not a k-root U(q0) is in a natural fashion a k-vector space. If 2q~ is 
a root, U(2q0) is a k vector space in a natural fashion and U(q0)/U(2q~) has a natural 
k-vector space structure. The U(q~), q0 E �9 will be referred to as the (k)-root group 
corresponding to g~. 

(3.12). - -  The set A (resp. A) is a basis for X(T) (resp. X(I")). Thus we can write 
q0= ~0e~ mo(q0)0 for any q0 E ~. It is then well known that all the rn0(~0), 0 E 
are in tegers  and that m0 >/ 0 or m0 ~< 0 for all 0 E A. For A ~ C A, we set 
~A' = {q0 E ~ [ m0(q0) > 0 for all 0 E A'}. Let U6, be the k-subgroup of G generated 
by {U(q0) I q0 E ~A'} and PA, the k-subgroup generated by {U(q0) [ q0 E ~ ,  m0(q0) /> 0 
for all 0 E A'}. Then PA, is a k-parabolic subgroup of (3 with UA, as its unipotent 
radical; also LA the subgroup generated by Z(T) and {U(q~) [E ~ ,  mo(q0) = 0 for 0 E 2'} 
is a Levi supplement to UA, in PA,. Finally it is known that every k-parabolic subgroup 
of (3 is conjugate to PA' for a unique subset A' C A by an element of (3(k) (Borel-Tits 
[ST]). 

(3.13) Proposition. - -  When S-rank G >/ 2, a~ Iu(,p)nr and dr Iu(~o)nr are Lipschitz 
equivalent. 

(3.14). - - W e  now show that (3.13) implies (3.7). The rest of the section will 
then be devoted to the proof of (3.13). Let q01, q% ... q)i be the enumeration of the roots 
in ~A, in increasing order. Let g : l-I~e~, U(q0) ---+ UA, be the morphism 

P-(X1,.--, XN) = X 1 �9 X2. . .  XN 

xi E U(q0i). Then g is an isomorphism of algebraic varieties. It follows that there are 
morphisms f : U~, --~ U(q0i), 1 ~< i <~ N over k such that 

x 
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Further  if F is a suitable congruence subgroup of  G ( ~ s )  one sees easily that if 
x E F V 1 U A , , f ( x )  E U(q0i)(~s) for all i, 1 ~< i ~< N. Since B is an isomorphism it 
follows easily from the inequality (**) of  (3.5) that one has 

do(l ,  x) ~ ~ dG(1 , f (x))  
1 ~<i~<N 

for all x E 1-Lss UA,(ko). Since dG and dr are Lipschitz equivalent on U(q)i) VI F, we see 
that there is a constant C > 0 such that dr(1,f(x))  <<. CdG(1,f(x))  for all x E F. It 
follows that  

1 ~<i~N 

dr(1 , f (x)  ) <~ CEl<i<Nd~(1 , f (x)  ) 

~< C'dG(1, x) 

for some constant C I > 0. Thus  we see that dG and dr are Lipschitz equivalent on 
(UA, VI F). Since F is commensurable  with any S-arithmetic subgroup and any k- 
parabolic subgroup of G is conjugate to a PA, by an element G(k), we see that  (3.13) 
implies (3.7). 

(3.15). - -  A first step towards the proof  of (3.13) is L e m m a  3.16 below whose 
formulat ion requires some preliminaries. Let v E S and let E be unipotent  algebraic 
group defined over kv. Let B be any group and assume we have a h o m o m o r p h i s m  
of B into the group of  automorphisms of E defined over k~. We assume that E is 
k-isomorphic to a vector space over k and that for this vector space structure on E, 
the action of B on E is linear thus giving a linear representation (y : B ~ GL(Ev) 
where we have set E(kv)= Ev. For b E B, let oqC(b) denote the set of eigen-values of  {J(b). 
Let L be the finite extension of k~ obtained by adjoining all the elements of  oC~b). We 
continue to denote by ] Iv the unique extension to L of the absolute value on k~. For 
)~ E .9~(b), let E(b, ~.) denote the generalized eigen-space for b corresponding to ~.: it 
is the vector space spanned by {e E Ev t (~(b) - )~)% = 0} (here d =  dimEv over k~). Let 
E+(b) = ~XE~(b), IXlv~E( b, ~'); it is defined over kv. T h e n  E+(b)(kv) can be characterized 

as the set of vectors {e E Ev I ~(b):F"(e) tends to zero as n --~ +e~}. We define Eu(B) 
as the span of  {E+(b) I b E B} - it is the same as the span of {E-(b) ] b E B} as 
well. Suppose now that E' C E is a B-stable kv-subspace and let F = E /E ' .  T h e n  the 
generalized eigen-subspace in E for b E B corresponding to an eigen-value )~ maps 
onto the generalized eigen-subspace of b in F corresponding to the same eigen-value. 
In particular Eu(B) maps onto Fu(B). With these observations we have: 

(3.16) Lemma. - -  Let L be a reductive k-group and C its central torus. Assume that one of 

the following conditions hold. 

(1) L = C is a k-split torus and I S  I>>. 2 or 
(2) C is anisotropic over k. 
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Let A C L be an S-arithmetic subgroup. Then for any representation tJ: L --* GL(E) on a 
k-vector space E we have for all v E S, E,(Av) = Eu(L(k~)) where A,  = A regarded as a group of 
automorphisms of  E over k~. 

Proof. - - W h e n  L = t3 is split over k and [ S I/> 2 this is immediate  from the 
fact that A is Zariski dense in 13 so that  every non-trivial character on 13 is non-trivial 
on A. To deal with the second case, let L" (resp. 13") be the Zariski closure of  A (resp. 
13 71 A) in L and L' (resp. C') the connected componen t  of the identity in L" (resp. 
13"). T h e n  L ' =  Ct.LI where L1 is the product  of all the k-simple factors of L which 
are isotropic over k~ for some v E S. T h e n  it is clear that LJL'~ is compact  where we 
have set L~ (resp. L'~)= L(kv) (resp. L'(k~)). Let E ' =  E,(L'~). Then ,  since L'~ is normal  in 
L~, it is immediate  that E' is L~ stable. Let F = E / E ' ;  then F,(L'v)= 0 and Fu(L~) = 
Image E,(L~). We claim that F,(L~)= 0. To see this let ~ be the representation of  Lo 
on F induced by c. Let D' C L' be any k~-split toms. T h e n  for any g E D'(kv), all the 
eigen-values of N(g) must  have absolute value 1 - in view of the fact that F,(L'o)= 0. It 
follows that D'  acts trivially on F. We conclude thus that ~ is trivial when restricted to 
L~ where L~ = L*(k~) and L* is the product  of all the k~-isotropic factors of L and the 
maximal  kfsplit  central toms in L. It is further clear that  LJL~  is compact .  Next let D 
be a k~-split toms in L. T h e n  D(k~) C f~. L~ with ~ C L~ a compact  set. Since L~ fixes 
every vector in F(k~), we see that D(k~)/is relatively compact  for every f in F(k~). Since 
D is kfsplit, this can happen  only if D acts trivially on F. We conclude that ~ factors 
through L/L1 where Ll is the product  of the maximal  central k~-split toms in L and 
all the k~-isotropic factors of L. This means that L/L1 is anisotropic over k~ and hence 
N((L/L1)(k0)) is compact.  Since ~(L~) is contained in this last compact  group, F,(L~)= 0. 
We have thus shown that  Eu(Lv)= E,(L'~). Thus  to show that E,(A)= E,(L~), it suffices 
to show that E,(A)= E,(L'~) in other words we may assume that A is Zariski dense in 
L. This means that E,(A) is L-stable (since it is A-stable). Let D be a maximal  k~-split 
toms  in L. From L e m m a  3.10 we know that there is a k-toms D defined over k and 
anisotropic over k and containing a conjugate of D. Consider  now the representation 
of  L on F = E/E,(A). The  eigen-values of N(g) for g E D ' n A  are all of absolute value 1. 
Hence  the (D' NA)-orbit of any v e c t o r f E  F(k~) is relatively compact  in F(kv). The  same 
then holds for the D'(ko) orbit since D'(k~)/(D'N A)- is compact  where (D'N A)- is the 
closure of (D' 7/A). This means that the orbit of  any vector in F(k~) under  any kfsplit 
toms  in L is relatively compact .  Thus  N(Lv) is compact  and hence F,(L~)= {0}. Hence  
Su(A): 

(3.17) Corollary. - -  Let L,  A and E be as in Proposition 3.16. Then there is a finite~ 

generated subgroup B C A such that E,(B) = E,(Lv)for all v C S. 

Proof. - -  By Proposition 3.16, E~(A)=Eu(Lv) so that Eu(Lv) is spanned by vectors 
V V V O 

el,. . . ,e r with the property that for each i, there is an element b i E A such that  e i is in 
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the span of  generalized eigen-spaces for b~ corresponding to eigen-values of absolute 
value < 1 in the valuation v. We need only take B to be the subgroup of A generated 
by {b~ I v E  S, 1 <<.i<~r}. 

(3.18) Lemma. - -  Let V a unipotent k-algebraic subgroup Of GL(n) and F be an S-arithmetic 
subgroup of GL(n). Let B C F be a finit@ generated subgroup of F normalizing V.  Suppose that 
there is a k-vector space structure on V compatible with the k-algebraic group structure on it such 
that the B action (by inner conjugation) on V is linear. We denote by By the group B and regard 
b ~ Int b, b E Bv as a homomorphism of B~ into k~-automorphism of V.  Assume that Vu(Bv) = V  

for all v E S. Let V = I-I~es V(kv) and H be the subgroup of ~ = l-I~Es GL(n, kv) generated by 
B and V. Then H is a closed subgroup of G. It is compactly generated. Moreover i f  dH is a path 
space metric on H, for every neighbourhood U of 1 in H, there is a constant C( = C(U)) > 1 such 
that for all x E V \ U, 

(,) C -~ log(1 + I[(x - 1)11) ~< dH(1, x) ~< C log(1 + [Ix - 111 ) 

where for A = {A,}~es, IlAl[ = Sup {lla~l[ [ v E S}. 

Proof. - -  Since V is isomorphic to a vector space over k, V / V  N F is compact .  
Suppose now that gn = bnx,, b, E B, x, E V is any sequence converging to a limit in ~ .  

-1X Since V / V  A F is compact ,  there is a sequence "/, E V M F such that {,/, , [ n E N} 

is relatively compact .  Passing to a subsequence we assume that  "/~-lx, converges to a 
-1 

limit y in V. This means that b,~/, = (bnxn)(x, "y,) converges to a limit h. O n  the other 
hand  bn~/, E F, a discrete subgroup of  ~ .  It follows that h = bn'yn for all large n. Thus  
g =  b,~/~y E H. Hence  H is closed in ~ .  Next for v E S, let '[[. II be a vector space 
n o r m  on V(k~). T h e n  there is a constant C1 > 1 such that for all x E V(ko) 

C-11og(1 +t Ilxll) ~ log(1 + II(x- 1)ll) -< Clog(1 +' Ilxll). 

This follows from the following : let el, ...,er be a basis of  V(ko) over k~. T h e n  the 
coordinates of  any x E V(k~) w.r.t, this basis are polynomials in the entries of  ( x -  1) 
as a matrix in GL(n, kv) and conversely. Thus  for proving the inequality (,) we may 
replace II(x- 1)11 in that inequality by 'ltxll. To prove the compact  generation of H, it 
is evidently sufficient to show that for v E S, V(kv) is contained in the group generated 
by B and • =  {x E V(k~) [ 'tlxll < 1}. Our  assumption that V,(B~)=V means that 

we can find a basis el, ..., er of V(k~) and elements bl, ..., br E B such that ']lbimeibi-mll 

tends to zero as m ~ oc for 1 ~< i ~< r. One  concludes in fact that there are constants 
CL, C2 > 0 and ~L i > 1 such that for all m E Z, 

Cl~,~ rn ~ 'llbmeibT, mll <. C2)L~ m. 

We assume, as we m a g  that  for x =  ~l<~i<.rXiei, xi E kv, 

' l lxll- max{Ixil I 1 ~< i ~< r}. 
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One has then 

'llbm(xiei)b~mll ~ C2%~-m l xi I m . 

If  we now choose m so large that ~,7, m I Xi I < 1 for all i, ~i = bm(xiei)b~ -m E f~ for every i, 
then 

(**) x =  ~_~ bS, m{ib m 
l~i~r 

evidently belongs to the group generated by f~ and B. Suppose now the m = m(x) 
above is chosen as follows: m(x)= 0 if x E f~; if  x ~ f~, m is the smallest integer > 0 

such that c2~,~ -m I xi I~ < 1. I f  x ~/ f~ one then has an integer ~,  1 ~< io <~ r such that 

C2%~ m+~ I Xio I > 1 leading to m ~< Alog(1 + 'Nxll) for a suitable constant A > 0. The  
inequality evidently holds also if x E f~. Let M > 0 be a constant such that dn(1, g) ~< M 
for all g E f~ U {bl,..., br}. T h e n  from the expression (**) for x it is immediate  that we 
have 

dx(1, x) ~< (2m + r)M ~< A p log(1 +' IIx II) + A" 

for sukable constants A' and A". The  inequality (,) of  the l emma is now clear : if 
we set ~ ' =  1-Ivss SL(n, kv), the inequality C-~(log 1 + ]l(x - 1)]l) ~< dH(1, x) is immediate  
from the discussion in 3.5 applied to the case G = ~ '  since dH(1, x) >/ C 'd~ , (1 ,  x) for 
all x E H outside a ne ighbourhood of 1 with a suitable constant C p > 0. 

(3.19) Corollary. - -  Suppose now that u  F, B, H are as in Lemma 3.18. Assume further 
that there is a semisimple k subgroup G of GL(n) such that B and V are contained in G. Then 
do Iv /~ coarse Lipschitz equivalent to dI-IIv. 

(3.20) Corollary. - -  Let V ,  F, B, H and G be as in Corollary (3.19) (with S-rank 
G >>, 2). Let 0 be the subgroup B(V  n 1-). Then 0 isfinite~ generated and do ]vnr /s Lipschitz 
equivalent to do [vnr. Also dr Ivnr /~ Lipschitz equivalent to do ]vnr. 

Proof. - - W e  need only observe (in the light of  3.2) that  O is cocompact  in H. 
For the second assertion observe that  if c > 0 is such that  dG(1, ~') ~< c for all the 
generators of  F defining dr then one has dG(1, T) ~< cdr(1, ~/); also if we assume, as we 
may, that the set of generators for F (defining dr) include a set of generators for O 
(which define do), then do(l,  7)/> dr(l ,  r) for all 7 E H. 

The  next l emma will be used to prove a generalization of L e m m a  3.18. 

(3.21) Lemma. - -  Let V be a connected unipotent algebraic group over k and V '  be a 
connected k-subgroup. Assume that V '  and E = V / V '  are vector spaces on k. Further suppose that 
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the commutator map (x,y) ~-+ x y x - l y  -1 0fVxV in V '  induces a k-bilinear map c : E x E ~ V '  
whose image spans V '  as a vector space. Then there exist k-morphisms L i : V '  ---+ V over k and 
elements yi  E V(k), 1 ~< i ~< q = dim V such that we have for z E V ' ,  

H -1 - I  yi ). Z = 

l<~i<~q 

Proof. - -  Since image c spans all of  V' we can find vectors xi,Yi, E E(N) 
such that ei=c(xi,Yi), 1 <<, i <<, q is a basis of  V'(k) over k. Let g; : V' ~ E be the 
linear m a p  ~i(~l<~j<~qZj~)=ZiX i of V t in E. T h e n  clearly one has for z =  ~l~j,<qZj~, 

z =  ~z~j<,qC(gi(z),y~). Next observe that the natural map V --~ E admits a section 
6 " E ---+ V defined over k. We need only take now Li = ~ o gi. 

(3.22) Lemma. - -  Let V and V '  C V be unipotent k-subgroups of SL(n) satisfying the 
conditions of  Lemma 3.21. Let F C G be an S-arithmetic subgroup, B C F a finitely generated 
subgroup normalizing V and V' .  We assume that the actions of B on E = V / V '  and on V '  are 
linear and that for every v E S, E,(B~)= E where B~ = B regarded as a group acting as (linear) 
automorphisms of  E over k~. Let V = YI~cs V(kv) and H = B . V ,  the subgroup generated by B and V 
in G( = 1-IoEs G(kv)). Then H is compactly generated. Moreover i f  dH is a left translation invariant 
path space metric on H,  for any neighbourhood U of 1 in H,  there is a constant C = C(U) > 0 
such that for all x E H \ U, 

C-11og(1 + I[(x- 1)ll)~< dH(1, x) ~< Clog(1 + II(x- 1)l[ 

/ f O  = H  n F, then 0 is finitely generated and do Ivnr Lipschitz equivalent to dH Ivnr, dG Ivnr 
and also to dr Ivnr. 

Proof. - -  Let N denote the Zariski closure of H. Then  N is a k-subgroup of GL(n). 
Let P : N ~ GL(n') be a representation trivial on V ~ and inducing an isomorphism of 
N / V '  onto a k-subgroup of GL(n'). Let B = Image B and V = Image V'  under  P- 
Then  the pair (V, B) satisfy all the conditions imposed on (V, B) in Lemma 3.18. Thus 
if H (=  Image H under 9) is the group B V where V = I-IrEs V(kv), H is compactly 

generated and one has for any compact neighbourhood U of  1 in H, a constant C > 0 
such that dgH(1 , V) ~< Clog(1 + I ] (V-  1)1[) for all x E V \ U. Now let x E V be any 

element and x its image in V. Let ~ be a compact neighbourhood of  1 such that f~ 
and E generates H where Z C B is a finite set generating B and Z is its image in B. 
Let f~ = ~(~), where (y : E ~ V is a k-section for the map V --~ E. We claim that Z U f~ 
generates V. Since 2~ U fl generates H, we need only show that V' is contained in the 

subgroup H1 generated by Z and f~. Let now z E V'; then by Lemma 3.21, one has 

z= I I  (Li(z)YiLi(z)-'Y:, 
t <~i<~q 



26 ALEXANDER LUBOTZKY, SHAHAR MOZES, M. S. RAGHUNATHAN 

in the notat ion of that lemma. Clearly it suffices to show that Li(x)yiLi(x)-lyi belongs 
to the subgroup H1. Now the commuta tor  ~11~-111-1 for ~, 11 E V depends only on the 
images of  { and 11 in V = V /V ' .  Suppose now that L/(x)( = image L/(x) in V) is written 
as a product  1-Ii#~g aj with 0~j ~ ~'~ a n d y ~ =  I-II<~j<~g~j w i t h  ~j E n then ~i = I ' I i~<g  ~((lj) 

and "qi = I-[l~<.g(Y(~j) belong to H1; and since {i and Li(x) (resp. yi and vii) have the 
- I  -1 

same image in V, we see that ~Mi~i "qi -~ Li(x)yiLi(x)-lyi 1, belongs to Hi.  This proves 
the compact  generation of H. But the expression z =  1-Ii<.i<.qLi(z)yLi(z)-ly -1 contains 

more  information. Let x E V be any element  and 2- its image in H. Now since 9 is a 
k-morphism one has a constant C > 0 such that for every x E V(k~), 

log(1 + [l(~- - 1)ll) ~ Clog(1 + I[(x- 1)[[). 

(the n o r m  on the left hand  side is the n o r m  in M(n, kv) while that  on the right hand  
side is the n o r m  on M(n', kv)). Hence  if 2- E H \ U. By L e m m a  3.18, one sees that 
for all 2- E H \ U ,  U a compact  ne ighbourhood  of 1 in H, there is a constant C > 0 
such that dg(1,2-) ~< Clog(1 + II(x- 1)11). Hence  it follows from the definition of  a 

path space metric, that there is a compact  (generating set) ne ighbourhood g~ of 1 in 
V such that any element  2- E V \ U can be written as a product  of not more than 

N(2-)  elements from g~ U Y~ where N = N ( 2 - ) ~ <  C'log(1 + II(x- 1)ll) for some constant 

C '  > 0. Let 2- =Xl, x2,...,x- N with ~ E ~ U Z and let ~=(y( Xl)~( ~).. .~(~-N) : for 

2- E V,  c~ has already been defined; we extend it to all f~ U Z by taking ~ Ig to be 
- -  N . . . .  I V t" any section to the map  I~ ~ I;. T h e n  one has x=x .x  Ix with z = x  x E Now 

II -lxll II -l[lllxll ~< (1-Ii~./~.g ll (2-i- )[t)llxll. I f a  > 0 is a constant such that [[~(g)[[ ~< a 

for all g E ~ U E, we conclude that  

Iizll = ][x-lxl[ ~< Agllxll and N ~< C'log(1 + I[(x- 1)ll). 

It follows that 

l o g i l z -  llI ~< C'log(1 + II(x-  1)ll) 

for all x E V with 
The  expression for 

x outside a fixed ne ighbourhood  U of  1 in V (C' depends on U). 
--1 -1 Z, Z = 1-Ii<.i<.e ~i'qi~i "l]i , shows now that Z is a product  

Z -- "C1...'I:P 

with ~j E ~(~ U 's for 1 ~<j ~< P and P ~< C"log(1 + I I (x-  1)l D for a suitable 
C "  constant > O. By definition Y is a product  of N elements from 6(~  U E) with 

N ~< C'log(1 + ] l (x-  1)1]). Thus  x is a product  of at most  (C + C")log(1 + ] l (x-  1)1[) 
elements from ~(tl U Z), it follows that riM(l, x)~< A'(C' + C")log(1 + ] l(x-  1)]1) for all x 
in V with 2- r U ,  U a compact  ne ighbourhood of  1 in V with A' > 0 an appropriate 
constant. Let U C V be a compact  ne ighbourhood of 1 such that  image U contains 
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U. T h e n  if x E V with ~- E U, we can find { E U with ~ = Y  so that z = ~ - ~ x  E V'. 
Since U is compact ,  IIgll ~< M for a suitable M > 0 and all g E U. We conclude 
that II~-~xl[ ~ Milxll. Thus  z - ~ - ~ x  can be expressed as a product  of not more than 
constant ,  log(1 + II(x - 1)11) elements for 6(~  U E) provided that  x ~ U proving that for 
x ~ U,  dH(1, x) ~< const-log(1 + II(x - 1)ll). Thus  given a ne ighbourhood U of 1 in V, 
there is a constant C > 0 such that for all x E V \ U, 

C-~ log(1 + II(x-  1)ll)~ dH(1, x) ~< Clog(1 + II(x- 1)ll). 

Since O is a cocompact  subgroup of H, one concludes that do tvnr and dH Iwr are 
Lipschitz equivalent. O n  the other hand  the inequality above shows that dH Ivnr is 
Lipschitz equivalent to d~ [vnr (cf. (3.5); note that G C SL(n)). On  the other hand  
there are constant A, A' > 0 such that 

dG(1,~/) ~Adr(1,~/) for all ~ ' E F  

dr(1,~') ,.<A'do(1,~') for all ~ 'EO.  

The  Lipschitz equivalence of riG, do, dr and dH all restricted to V M F now 
follows. 

(3.23) Lernma. - -  Let V,  V '  C V be unipotent k-subgroups of a reductive k-group 
G C SL(n). Let F C G be a finitely generated S-arithmetic group and B C F a finitely generated 
subgroup normalizing V and V' .  Assume that E = V / V '  carries a vector space structure such that 
the natural action of B on E is linear. Suppose further that for all v E S, E,(Bv)= E where Bv 
is B regarded as kv-automorphisms of E. Finally assume that d6 Iv'nr is Lipschitz equivalent to 
dr Iv'hr. Then dG [vnr is Lipschitz equivalent to dr Ivnr- 

Proof. - -  Let H* be the Zariski closure of  H - B.V and p a faithful representation 
of H * / V '  in GL(n') for some n'. We will treat 9 also as a representation of H*. Let 
9(V) = V, 9(B)= B and 9(H)= H Let O = B(V V1 F) and O = 9(O). T h e n  by L e m m a  3.18 
and Corollary 3.20 (applied to B, V, H) we see that if E C p(HV/F) is a finite symmetric 
set of generators, then for ~ E V M F C H, the image ~ = 9(7) E O is a product  0~ 1 " . . . "  O~ N 
with 0~i, E E and N ~< C log(1 + II(~'- 1)[I) for a suitable constant C > 0. Let Z C H be 
a subset that maps bijectively onto E and for a E E, let a be the unique element of Z 
lying over it. Let ~/= 0~1 ...aN, then one has II~-tll ~< A N where A = Sup {lla[I I 0~ E Z}. 
Now 0 = 7 - 1 7  E V' and one has clearly Iloll = II~-l~,ll ~< ANllTII ~< Ac'~ I. One  
concludes from this that there is a constant C'  > 0 such that 

log (1 + I ] (0-  1)11) ~< C'log(1 + I1~- lll) 

for all ~ E H. Since dG ]v'nr is Lipschitz equivalent drlv'nr, 0 is expressible as a product  
C" of N' elements from a finite set of generators Z1 of  F with N'  ~< log(1 § 1)11) for 

C" some > 0. It follows that ~,= ~O is a product  of N + N' = N" elements from Z U Z' 
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where N" ~< C" log(1 + II(~/- 1)1 [. Thus  dr(l ,  ~/) ~< C~dG(1, T) for some C~ > 0 and all 
"t' E V M F. This shows that dr Ivnr and dG Iwv are Lipschitz equivalent. 

(3.24) Proof of 3.13. Case 1: ISI/> 2. - -  Let ~0 E ap be a root such that  2tp is not a 
root. Set V = U(q~) and B = T V1 F where F C G is an S-arithmetic group in G. T h e n  B 
is finitely generated. The  pair (V, B) then satisfies all the conditions of (3.18): Note that 
since T acts on V linearly through the non-trivial character q0, V,(T(kv))= V = Vu(B) 
for all v E S (3.16). Proposition 3.13 for this case is now a restatement of Corol- 
lary 3.20. Next suppose that q~ E @ and 2q~ E @. Here we appeal to L e m m a  3.23 
taking V = U(q0), V'  = U(2q0) and B = T M F, F an 
the assumptions made  in that l emma are satisfied 
Lipschitz equivalent to dr ]vnr. 

S-arithmetic subgroup of 13. All 
and we conclude that dG Ivnr is 

(3.25) Proof 3.13. Case 2: ISI = 1, S = {v}, k-rank G/> 2. - -  Observe first that we 
may  assume that q0 E A in proving (3.13). This is because for any q0 E �9 there is an 
element  co in the k-Weyl group of G such that  co(q0) E A or co(q~)/2 E A; and in the latter 
case U(q0) C U(q0/2) (cp/2 E ~). Thus  we assume that q0 is a simple k-root. Since G is 
k-simple there is a root ~ E A with (q0, ~) ~ 0. We may  evidently replace G by the 
group G' generated U(q0), U(-q0), U(~) and U ( - ~ )  for proving (3.13). In other words, 
we can assume that k-rank G = 2. Thus  A = {oc, 13}. Let V(cz) be the group generated 
by {U(q0) I q0 E * ,  q0 = m{z + n13 with m > 0} and let M(I3) = group generated by U(13) 
and U(-13). T h e n  M(~) normalizes V(c~) and M(~) is a k-simple group of  k-rank 1. 
Also T(I3), the identity componen t  of  T fq M(13) is a maximal  split torus in M(13). For an 
integer t ) 0, let V(a)t = group generated by {U(q0) [ q0 E ~ ,  q0 = ma + n13 with m > t}. 
T h e n  it is known that E(a)t = V(a)t/V(o~)t+l are in a natural fashion k-vector spaces (for 
t~> 0) and that the action of M(13) on E(a)t is linear. (Each E(a)t is evidently naturally 
isomorphic to the direct product  of  the {U(q0) I q0 E ~ ,  ~0 = (t + 1)a + s13}. Since each 
U(~0) carries a vector space structure we can equip E(a)t with the direct sum vector 
space structure. This  vector space structure affords another  description. Let T'([3) be 
the identity componen t  of  the kernel of ~ in T. T h e n  for v E E(a)t(k) and E E k*, we 

define ~.v as the class of ~-'b~ -1 modulo  V(cz)t+l where v E V(cz)t+l is any lift of  v and 

E T'(13)(lc) is an element such that (t + 1)a(~)= E. Since M(13) and T'(13) commute,  it 
is clear that the action of  M(13) on Ea(t) is linear for the above vector space structure.) 
Moreover, the eigen-characters of T(13) acting on E(q0)t is precisely the set 

(t) = {q0 E �9 [ q0 = (t + 1)a + m13 for some m}. 

Let ~ ' ( t ) =  {(p E ~(t )  ] q0 is non-trivial on T(13)} and let A=M(~)71  F. T h e n  one 
has (by (3.16)) that  (E(a)t)u(A)= (E(~)t)u(M(~)(k~)); on the other hand  (E(cz)t)u(M(~)(kv))D 
(E(cz)t)u(T(13)(ko)) = Z~0e~,(t)W(q0), where W(q~) = Image U(q0) in E(a)t. 

We observe that as the root system �9 being of rank 2, one has only the following 
possibilities (assuming that (o~, a ) />  (13, ~)): 
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- T y p e  A2 : O = { + c x ,  +13, +(r 
- T y p e  B2 : * = { +  0r 4- 13, 4- (cz + 13), 4- (0r + 213)} 
- T y p e  G2 : @ = {4- cx, 4- 13, 4- (o~ + 13), 4- (cz + 213), 4- (cz + 313), 4- 2cz + 313} 
- Type  BC2 : @ = {4- cz, 4- 13, 4- 213, 4- (a + 13), 4- (cz + 213), 4- (2cz + 213)} : This 

is the only "non-reduced" case. 

T y p e  A2: Here we observe that V(~)t = 0 for t~> 1 so that V(a)=  E(~)0 = W(o 0 + 
W(o~ + 13). It follows that V(o~) is a vector space and V(a)u(T(13)(kv)) = V(o 0. From (3.17) 
it follows then that there is a finitely generated subgroup B C A( = (M(13)n F)) such 
that (B, V = V ( o 0 )  satisfy all the hypotheses in (3.18). It follows now from (3.20) that 
Proportion 3.13 holds for U(a). Since �9 is of type A2 and 13 is a Weyl group transform 
of a, (3.13) holds for 13 as well and hence for any q0 E ~.  

T y p e  B2. Here we have to show that (3.13) holds with q0 = a or q0 = 13 separately 
as the two are not conjugates under the Weyl group. Consider first the case q0 = ~. 
Then  V(c~) is generated by U(o~), U(cx + 13) and U(o~ + 213). It is a k-vector space and 
one has V(a)t = 0 for t/> 1 so that E(o 0 = V(o 0 = W(o 0 | W(a  + 13) | W(o~ + 213). The 
characters o~ and o~ + 213 are both non-trivial on T(13). Let V=V(o0u(M(13)(kv)); then 
V=Vu(M~(kv)) and it contains U(~). Let B C A ( = M  n F) be a finitely generated 
subgroup such that Vu(B)=V,  : such a B exists by Corollary 3.17. Then  the pair 
(V, B) satisfy the hypotheses of Lemma 3.18. By Corollary 3.20. dG Ivnr and dr Ivnr 
are Lipschitz equivalent. Since U(o 0 C V,  dG [u(~)nr is Lipschitz equivalent to dr {u(a)nr. 
To deal with the root 13, consider the unipotent group V = V(13). Let V ' =  U(0~+213). Let 
M(cx) be the group generated by U(-t-o 0 and T(c~) the identity connected component  of 
T n M(o0; then T(~x) is a maximal k-split torus in M(o 0. The group M(o 0 normalizes V 
as well as V'. Since o~ + 213 is a long root it is conjugate to o~ under the Weyl group. 
Hence by what we have shown above do Iv, nr  is Lipschitz equivalent to dr Iv'hr. On 
the other hand in E = V/V' the eigen characters for the action of T(o~) are precisely 
the restrictions of 13 and 13 + a to T(a); since 13 and 13 + cx are both non-trivial on T(o 0 
(a is a long root) we see that E,(T(c~)(k~))= E. From (3.17) once again we can find 
B C A = M(c~)n F which is finitely generated and such that E~(B)= E. Thus Lemma 
3.23 applies to (V, V' ,  B) and we conclude that dG and dr are Lipschitz equivalent on 
V n F. Since V D U(13) we see that (3.13) holds for q0 = 13. This completes the proof in 
the case of Type B2. 

T y p e  G2. Consider here the root system generated by (c~, a +  313). This is of type 
A2. By replacing the group G by the group generated by U(+o0, U(+(a  + 313)) which 
is again k-simple with a reduced root system of type A2, we see by the preceding 
that da and dr are Lipschitz equivalent when restricted to U(0~ + 3}) n F. Let V = V(a) 
and V' =U(2cx + 313)(=V(a)0. Then  M(13) normalizes V as well as V'. Moreover, V' 
and V / V ' =  E have natural k-vector space structures for which the actions of M(13) is 
linear. Now the eigen-characters for T(13) acting on E are precisely the restrictions to 
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T(15) of the roots o~, o~ + 15, a + 215, o~ + 315 and every one of them is non-trivial. Thus 
Eu('r(15)(k~)) = E. We can now apply (3.17) and (3.22) as before to conclude that dc and 
dr are Lipschitz equivalent on V I V  N F. Now U(o~ + 15) C V and ~ + 15 is a short root. 
It is clear that do and dr are Lipschitz equivalent on U(cx + [3) and hence (since o~ + [3 
is conjugate to 15 under the Weyl group) on U(~) as well. The proof in the case �9 is 
of type G2 is thus complete. 

T y p e  BC2. The root ot being long, N = {o~, 215} is a simple root system for the 
k-group G' generated by U(4-o~) and U(4-215); and the root system of G' is reduced of 
type B2 and G' is k-simple. Thus by appealing to the case of type B2, we see that 
dG, and dr are Lipschitz equivalent on U(a)71 F and U(215)N F and hence also the 
metrics de; and dr are Lipschitz equivalent on U(o~)N F and U(213)A F hence also on 
U(o~ + 2[3) and U(2o~ + 215) (c~ + 215 and 2o~ + 215 are Weyl group transforms of o~ and 
213 respectively). Consider now the group V = U(15)U(a + ~)U(215)U(o~ + 215)U(2a + 215). 
Let V' =U(2~)U(~ + 2[~)U(2a + 215)(=V(~)1). Then  M(a) normalizes V and V' and if 
E = V / V ' ,  the eigen-characters of T(a) acting on E are precisely 13 and a + 15 (restricted 
to T(o~)) and they are both nontrivial on T(o~) so that Eu(M(a)(k~))= E. We can again 
apply (3.23) to conclude that d~ and dr are Lipschitz equivalent on V N F. (do and dr 
are Lipschitz equivalent on V' f3 F as V' is the direct product of U(215), U(o~ + 2~) and 
U(2a + 2~)). This concludes the proof of (3.13) for the case k-rank G/> 2. 

(3.26). - - W e  shall use the following corollary of Chevalley commutation 
relations. 

Lemma. - -  Let G be a connected semisimple algebraic group over an algebraical~ closed 
field }. Let T be a maximal } -sp l i t  torus of  G and �9 the root system of  (3 with respect to T.  For 

E ~,  let U(a) denote the unipotent 1-parameter subgroup of  G corresponding to ~. Let % 0 E 
be a pair of  distinct roots such that q) - 0 = ~p~ is a root but ~ - 20 is not a root. Let V (resp V ' ,  
be the subgroup of  G generated by U(mq~' + nO), m > O, n >>, 0 (resp. U(mq0' + nO), m > 1, n/> 0). 
Then V '  is a normal subgroup of  V and V / V '  has a natural structure of a vector space over } 

on which the action of  U(0) is linear. Moreover (V/V')(k) g V(k)/V@) is generated by U(q0') as 
a module over }[U(0)]. /fq0 + 0 is not a root, U(q0)(k) = { x y x - l y  -1 I x C U(0),y E U(q0 - 0)}. 

Proof. - -  This is essentially consequence of the Chevalley commutation relations. 
These relations assert the following: There is a collection X~ : Add ---+ (3 of 
isomorphisms of the additive group Add (over }) onto the subgroup U(c~) with the 
following property: for ~,  [3 roots with a + [3 a root, o ~ -  15 not a root, and length 
o~/> length [3 X~(t)X~(s)X~(t)-IX~(s) -1 =X~+~(N~- ts)~(t, s) where ~(t, s) is a product of 
elements belonging to the group generated by the {V(m0~ + n15) I n > 1} with N ~  = 4- 1. 
(Note that since length a />  length 15, if mo~ + n~ is a root with m > 1, then n > 1 as 
well) (see [St]). We now take ot = q0-  0 and 13 = 0; since o~ + 215 = q) is a root, one sees 
that length o~(~> length [3) and the lemma is now immediate. When a, 15 have the same 
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root length, then ma + n[~ is a root for n/> 1, if and only if m = 0 or 1 and n = 1. This 
proves the second assertion. 

(3.27) Case 3. S = {v}, k-rank G = 1, C contains a nontrivial kv-split torus. - -  Recall 
that C is the maximal anisotropic central torus in Z(T), the centralizer of  T. Thus 
Z(T) = T a M  with M = [Z(T), Z(T)] an anisotropic semisimple group over k. The  simple 
k-root system A of  G w.r.t. T now consists of  a single element a. In the absolute simple 
root system A of G w.r.t. T (cf. (3.11) for notation), the set ~={q0 E A I q0 IT =0~} 

consists of  one or two roots (this is true for any k-rank 1, k simple group); in the case at 
hand i.e. when C is non-trivial, we assert that [ a [ = 2. Let AM = {q) E A [ U(q0) C M}. 
Since C is central in Z(T) the centralizer Z(T) of T is also the centralizer of  a T .  Thus 
if q0 E ~ is trivial on T (i.e. if U(q0) centralizes T), U(q)) centralizes a T  as well. Thus 
every q0 E A which is trivial on T is trivial on CT. On  the other hand, N~0e~ Ker q) 

is a finite subgroup of  T. Thus we see that (-I{~c ~ I~IT non tri,a~} (Kernel q0 in TC) has 

to be finite. This means, since d i m C  ) 1, that [ {q0 E A[q0 IT nontrivial } [ )  2. On  
the other hand if q0 E A, and q) IT is non-trivial, then q0 IT = a. Thus [ ~ I )  2, hence 

[ a I = 2. Since a = {q0 E A[q0 IT is non-trivial } one sees that dim TC = 2 and hence 
d i m C =  1. 

Let ~ = {~1, ~2}. The  Galois group ,~  = g a l  (ks~k) of a separable closure ks of k 

over k operates on the character group of T stabilizing (I). Moreover since T is split 

over k, it is immediate that for o E ~ and (p E i~i, o((p)= (p on T. It follows that we 
have for o E 

O(~i) = ~/o + Z m(q0)~0 
q0 E'~M 

with i, = 1 or 2. Since dim C -  1 and C is anisotropic, there is a o0 E ~ such that 
o0([31) = - ~1 on C. Since Ker[31 N Ker~2 N C is finite, at least one of  [31 o r  ~2 say  ~1 

is non-trivial on C; then c0(~1) ~: 131 on C while all q0 E ~M are trivial on C. Thus we 

see that ~/% ~: [31 i.e. [5i% = 132 and in fact [~2 = ~11 on C. 

Suppose now that ~0 E ~ is any root such that q0 IT = a .  Then  one has 
~0 = ~i + ~O~M m(~0)~0 with i=  1 or 2. It is immediate from this that all the eigen- 

characters of  C acting on E = U(ot)/U(2a) (where we set U(2a) = 0 if 2or is not a root) 
are non-trivial. Set V = U(a) and V ' =  U(2a). Then  V' and E = V / V '  are vector spaces 
in a natural fashion for which the action of  Z(T) is linear. Moreover, V' is central 
in V and the commutation map V x V ---* V' ,  (x ,y)  ~ xyx - l y  -1 defines a k-bilinear 
map c "  E x E ~ V'. We now assert that the image of  c spans V' as a vector 

space. To see this observe first that since I~l = 2, A is simply laced (Tits classification) 

so that all roots lengths in N are equal. Next let i~i*={~0 E il5 : ~0 IT = 2 a } .  

Then  V' is spanned by the {U(q0) �9 q0 E ~*}. Thus it suffices to show that V' 
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contains U(q0) for every q0 E iii*. Let k' be a Galois extension of k over which I" 

splits and let q~ '=  Gal(k'/k). T h e n  ~ '  acts on the character group X(T) leaving 

stable and hence leaves invariant the standard inner product  (-,-) on X(I- ')Q R. 
We identify X ( T ) Q  R as the subspace orthogonal  to the kernel of  the natural map  

X(T) | R --+ X ( T ) Q  R for this inner product.  Unde r  this identification - note 

that X ( T ) |  R is precisely the space of ~ ' - invar ian ts  in X ( ~  | R one sees 

easily that for q0 E ~ ,  nq0 IT = Y~c~,tY(qo), where n =  I ~ ' l  . Now if q~ c ~*, one 
has 0 < (2o~, o~) = (q0 ]T , ~ IT) "-- n - 2 ( ~ 6 c , ~  , (Y(q)), ~ 6 c ~ '  (Y(~)) "- n-2(q 0, ~ ,  6c,~ '  "~(Y(~)) 

(where [3 C ~). It follows that there is a 0 = 6([3) in ib such that (q0, 0) > 0. It follows 

that 9 - 0 is a root. Moreover q0 - 20 is not a root since A is simp~ laced. It follows now 
from L e m m a  3.26 that  the set {xyx- ly  - l  : x C U(0)(k), y E U(q0 - 0)(k)} is all of U(q0)(k). 
Since 0 IT = ~ IT = I~ and q0- 0 IT = 2c~- a = r we see that U(9) is contained in the 
image of c. 

Let B = C  f3 F, F an S-arithmetic group in t3. T h e n  ( V , V ' , B )  satisfy all the 
conditions in L e m m a  3.22 (in view of the assumption that C splits over kv, the fact 
proved above that all eigen characters for the action on E are non-trivial and 3.17). 
Thus  do and dr are Lipschitz equivalent on U(tx)V/F = V N F. 

We are now left with the last case: 

(3.28). Case 4. S = {v}, k-rank G = 1, C is anisotropic over kv while M is isotropic over 
kv. - -  Suppose first that I ~ I = 2. From the Tits classification scheme, we can then 
conclude from the assumption that k-rank G = 1 the following : G is of type An, n/> 3 
or E 6. Moreover since kv-rank G/> 1, once again from the Tits classification it is seen 
that Z(T) has an absolutely simple componen t  M '  which is defined over k, isotropic over 
kv and its sub-diagram A~ in A is connected to both the roots in ~ (in the case G is of 
type E6, M itself is absolutely simple). 

Now 13 E ~ is negative dominant  as a weight of M '  for the simple system A M. It 
follows that (since M'  is absolutely simple) that as a weight for M' ,  any [3 E ~ is a strictly 
negative linear combinat ion of  the roots in A~t; and our choice of  order on X(I") ensures 

that [~ is nontrivial on the maximal  k~-split torus of M '  (which is contained in q-'). Set 
V = U(0~) and V ' =  U(20~). We will now examine the action of  M'  on E = U(o~)/U(2o~). 
E is a k-vector space on which M'  acts linearly Clearly from what  we saw above 
E,(M'(k~)) D U(~) for ~ E ~. Since M '  is normal  in Z(T), E,(M'(k~)) (denoted E' in the 
sequel) is Z(T)-stable. Let q0 C �9 be such that U(qo) C U(ct), U(qo) ~ U(2tz). Let F(q0) be 

the image of U(q0) in E. We want  to show that F(qo) C E'. Since E' is Z(T)-stable, we 
may  by transforming U(tp) by an element  of the Weyl group of Z(T) assume that q~ is 
negative dominan t  with respect to AM. This means that (q0, gt) < 0 for all ~ E AM; on 
the other hand  since U(tp) C V(cz), q) > 0. Since U(9 ) 9~ (2tz), qo IT = (g" We see thus 



THE WORD AND RIEMANNIAN METRICS ON LATTICES OF SEMISIMPLE GROUPS 33 

that there is a root 11 E a = A \ AM such that (q), 13) > 0 so that q) = [3 or ~0 - [t is a root. 
If q0 = 13, q~ is non-trivial on a kv-split torus of  M'  and hence E(q0) C E'. Suppose then 
that q0 ~: ]t; then q~ - 13 is a root of  M'  so that U(q0 - [3) C M'. Now the root system 

is simply laced and one deduces from the Chevally commutation relations (arguing 
as in (3.26)) that E(q0) belongs to the U(q0-  11)-submodule of E generated by U(11). 
Since E' D U(]t) and is Z(T)-stable, E'  C U(tp). We see therefore that Eu(M'(kv))= E. 
The group V ' =  U(2a) is central in V = U(ot). Also V' and E = V / V '  are k vector 
spaces and the commutation map (x,y) ~ xyx-ly -1 of V yields a k-bilinear map c: 

E x E ~ V'; image c spans V' as is seen from Lemma 3.26 in view of the fact that 
is simply laced. One  can now apply Lemma 3.22 taking for B a suitable finitely 

generated subgroup of M 'V/F  (Lemma 3.17) to conclude that dG and dr are Lipschitz 
equivalent on V M F = U ( a ) M  F. We have thus proved (3.13) in case 4 under the 
additional assumption that [ a t  = 2. 

We now deal with the case [ ~1 = 1. Let {[3} = a. T h e n  11 is connected to every 

connected component  of  the diagram AM of M. It follows that [t is nontrivial on the 

maximal kv-split torus of M contained in T. As before let V = U(ot) and V' = U(20t) with 
U(2a) trivial if 2a  is not a root. One  then has vector space structures on E = V / V '  and 
V'  with the Z(T)-action for these structures linear. We denote by p the representation 
of  Z(T) on E. 

Now let ~ = {q0 E ~ [ U(q0) C U(a), U(q)) ~ U(2a)} (it is the same as the set 

{(9 E ~ [ q 0  IT = a } .  For ~ E ~ ,  let E(gt) = Image U(gt) in E ( = V / V ' ) .  We assert 
now that E' := E,(M(kv)) is equal to E. For this first observe that E'  contains E(~) and 

thus it suffices to show that for ~ E Up, lZ.(~) is contained in the Z(T) submodule E" 
of  E generated by E(N (E' is Z(T)-stable). To prove that E(~) C E" for ~ E ~ we 
may replace ~ by a transform of ~ under  the Weyl group Z(T). In particular we may 
assume gt to be negative dominant  for AM. This means that (gt, q0) ~< 0 for all q0 E AM. 
Since ~ IT = a ,  ~ > 0; hence (~, [t) > 0. If  ~=11, E(~) C E" and so we assume that 

7 ~ [t. Now ~ = 11 + ~eXM m(q0)q0 with m(q0) integers >/0. It follows that ~ - 21t cannot 

be a root. On  the other hand since (~, 11) > 0, ~ - 13 is a root. Now Lemma 3.26, 
taking ~ = q0 and 11 = 0, shows that E(~) is contained in the U(~  - 11) submodule of E 
generated by E(~): If  x E U(gt - 11),y E E(11), then p(x)(y) - y  = z + z 1 where Z E E(~) 

and z I belongs to sum of eigen-spaces for ~' corresponding to characters other then 
gt (Lemma 3.26); the lemma also ensures that z 5r 0 if x 7 ~ 1 and y 7 ~ 0. Thus since 
U ( ~ -  It) C M and E" are q'-stable, z E E". As d i m E ( ~ ) =  1, we have E(~) C E". 

Since the E(~), ~ E C~ span all of  E we see that Eu(M(kv)) = E. By Corollary 3.17, we 
can find a finitely generated subgroup B C M Cl F such that E,(B)= E. We can now 

appeal to Lemma 3.22 with V, V' and B as above. The  conditions in that lemma 
about the commutator  map V x V ~ V'  are satisfied if char k = 0 or if 2a  is not a 

root or if A is simply laced. Thus we have proved (3.13) in the following situations �9 
S = {v}, I ~ I = 1, t21 is anisotropic over k~ and either char k = 0 or A is simply laced 
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or 2a  is not  a root. In the case that is left out, viz when char k > 0, 2a  is a k-root 
and ~ is not  simply laced, we will appeal to L e m m a  3.23. In order to do this one has 
to show that do and dr are Lipschitz equivalent on V'  N F. Let G' be the k simple 
algebraic group generated by U(-t-2~x). T h e n  T C G' and {2a} is a simple k-root of 
G' with respect to T. Now if we show that S-rank G ~ /> 2, we can then appeal to 
the earlier situation (where V'  is trivial) to conclude that dG, and dr,, F ' - G ' A  F, are 
Lipschitz equivalent on V N F. Since dG and do, are Lipschitz equivalent on V 'N  F, this 
would prove the result. Thus  we have to show that k~-rank G' />  2 under  the following 
conditions on G and k 

(i) Char  k > 0 (ii) A has two root lengths (iii) 2~x is a k-root. 

We will appeal to the Tits classification. Since ~ has two root lengths, G is of  one 
of the types B,,  C, ,  G2 or F4. The  fact that 20~ is a root leads us to exclude (rank 1) 
groups of type B, as also C2. There  are no k-rank 1 forms of  type G2 (over any field, 
see [Ti2]) so that G2 is also excluded. Since k is a globalfield of positive characteristic, 
all anisotropic groups over k are of  type of An (see [Ha2], cf. [Ma IX.(1.6)(viii)]). This 
means that G cannot  be of  type F4 (of k-rank 1). This  leaves us to consider only groups 
of  type C,. Here again using the fact that  all anisotropic groups over k are of  type A, 
and examining the Tits diagrams of type Cn, we see that the Tits Diagram of  G over 
k is necessarily 

O~', [ 

Over k~, the diagram is necessarily of the form 

0 0- ' ,  ,~) 

It follows that  over kv, M is an almost direct product  of  two copies H1, H2 of 
SL(2). The  representation of  M on E is the tensor product  Pl | f12 of the natural 
representations Pl,  P2 of H1, H2 respectivel)~ T h e  representation of  M on V'  on the 
other hand  is trivial on one of the Hi, i =  1, 2, H2 say, and is the adjoint representation 
restricted to the other factor H1. It is easy to see now that H1 is the commuta tor  
subgroup of the centralizer of T in G ~. Thus  kv-rank G ~/> 2. This  completes the p roof  
of Proport ion 3.13. 

4. K a z h d a n  conjecture 

The  main  goal of this section is to prove: 

(4.1) Theorem. - -  Let F < G be an irreducible lattice in G as in (3.6). Assume that 

rank G =•I=1 rankkiGi >>- 2 then (F, dw) is undistorted in (G, dR). 
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(4.2) Remarks 

(i) Clearly dR(y, 1) ~< C dw(y, 1) for some fixed constant. Hence we need only 
show the other inequality. 

(ii) Recall that by Margulis arithmeticity theorem ([Ma, chap. IX, (1.11), p. 298], 
[Ve]) F as in the theorem is an S-arithmetic group, i.e., there exists a global field k, 
a finite set of valuations S of k, containing all the archimedean ones, and an almost 
simple k-algebraic group G, such that G is locally isomorphic to 1-Iv~s G(kv), where k~ 
denotes the completion of k with respect to v, and F is commensurable with G(~s), 
where O s =  {x E k[ [XIv ~< 1 for every v ~ S}. Note that we can assume that none of 
the factors of G is compact since otherwise we can project the lattice into the product 
of the non-compact factors. It will still be discrete and the kernel is finite. This also 
does not change the rank. We ma)~ and will, assume that rank kG/> 1 since otherwise 
G(Os) is cocompact in G, in which case the theorem is easy (see also (3.2)). 

Note also that F is indeed finitely generated (cf. [Ma, w .3], [Ra2]). 
(iii) We will think of Os as embedded discretely in rLcs k~ via the diagonal 

embedding and when talking about "bounded set" etc. - it will always be with respect 
to this embedding. If  So c_ S is a subset of valuations (e.g., So = Soo the set of the 
archimedean valuations) we write for x E k, [xls 0 = Eo~s0ixl~. We write simply Ix I for 

Ixls. 
We also write for x E k, [xl*= I-Iv~s Ixl~ �9 Note that as S is finite (and fixed for 

our discussion), [x[* is bounded polynomially by Ix[. Observe also that for x E Os we 
have Ixl * = #(~s/X~s).  

D~nition. - -  In what follows, we shall say that a subgroup F0 ~< F is (dw, dr`)-undistorted 
/f (F0, dwlr0) is undistorted in (G, dr.), i.e., for every element y E F0 there exists a word in the 
generators ofF(!!) expressing y, whose length is O(dr.(y, 1)). Clearly /fF1 < F0 < F and F0 is 
(dw, dr`)-undistorted then F1 is (dw, dv,)-undistorted. Notice also that i f  a finitely generated subgroup 
F0 < F is undistorted in G with respect to its own word metric then it is (dw, dp,)-undistorted (with 
respect to dw - the word metric of F). 

We shall break the proof of the theorem into several lemmas. 

The proof proceeds in several steps. The results of section 3 enables one to 
conclude first that for a k-split unipotent subgroup U of G. U fl F is (dw, dR)-un- 
distorted. Since reductive k-subgroups are undistorted in G and uniform lattices are 
undistorted in their ambient groups, the above fact leads us to conclude that if H C G 
is a k-subgroup such that H M F is uniform in H, then H I-1 F is (dw, dR)-undistorted. 
We then consider a k-rank one subgroup H in G and show that H M F is (dw, dR)- 
undistorted (note that H M F may fail to be undistorted in H itselt). This is achieved 
through a geometric argument involving the structure of the fundamental domain as 
constructed by Borel [Bo]. The next step is to show that if P f /F is (dw, dR)-undistorted 



36 ALEXANDER LUBOTZKY, SHAHAR MOZES, M. S. RAGHUNATHAN 

for all maximal parabolic k-subgroups then F is undistorted in G. Once this is proved 
a simple induction on the rank of G and the result stated above for k-rank one 
subgroups yields the theorem. The proof that it suffices to show that P n F is (dw, dR)- 
undistorted for all maximal parabolic k-subgroups occupies essentially all of section 4 
starting (4.10). Here we exploit the Bruhat decomposition in G(k) with respect to P(k). 
One can confine oneself to elements of F that lie in the unique open Bruhat cell. In 
this cell we have a natural product decomposition for every ~t as a product ~,= u}-rnvu ~ 

where u~ (respectively u}-, my) belongs to the unipotent radical of P (respectively the 
unipotent radical of the opposite of P, Levi component  of P). The elements u}-, u~ 
and rny belong to U-(k), U+(k) and M(k) respectively and are not, in general, integral. 
The  failure of u}- to be integral is measured by a function which we call Den(u}-). In 
our case this is measured by the value of a natural representative function F on G 
at ~t. Viz the function that describes the divisor which is the complement of the open 
Bruhat cell. (This function is of the form F(g) = < v*, gv > for a suitable linear action 
of G on a vector space V with v E V a vector such that the line kv is stable under P.) 
The proof uses induction on the values of Den(u}-), F(~/) as well as I]u}-II. 

(4.3) Lemma. - -  Let U < G be a k-split unipotent k-subgroup of  G. Then F0 = U(~s)  is 
(dw, dR )-undistorted. 

Proof. - -  Any k-split unipotent group is contained in the unipotent radical of 
some k-parabolic subgroup (see [-BT2]). Hence the lemma follows from Theorem 3.7 
and the remark in the definition following 4.2. 

(4.4) Remark. - -  When k is of  characteristic zero all unipotent k-subgroups are k-split. 

(4.5) Lemma. - -  Let H < G be a reductive k-subgroup such that H N F is a uniform lattice 

in H. Then H n F is (dw, dR)-undistorted. 

Proof. - -  This follows from Proposition 3.2 and the fact that a reductive group 
H < G is always undistorted. 

(4.6) Remark. - -  Assume k is of  characteristic zero. Let H < G be a k-subgroup such that 

H O F \ H  is compact then H N F is (dw, dR)-undistorted. 

Proof. - -  Let H = RU where R is a reductive k-subgroup and U is the k-unipotent 
radical of H. R n F is a uniform lattice in R and hence by Lemma 4.5 is (dw, dR)- 
undistorted. U n F is (dw, dR)-undistorted by Lemma 4.3. Since (R n F)(U N F) is of 
finite index in H N F, it follows that H N F is (dw, dR)-undistorted. 

(4.7) Lemma. - -  Let H < G be a k-simple k-subgroup of  k-rank one. Then F0 = H N F o s  
is ( dw , da )-undistorted where Fos  = G(Os). 
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Proof. - -  Let T be a maximal k-split torus in H ,  Z(T) its centralizer and N and 
N -  the two (opposing) maximal unipotent k-subgroups of H normalized by Z(T). Then  
P = Z(T)N is the normalizer of N in H. We denote by ~+ the positive root system 
of H with respect to T determined by N and by r the unique simple root in ~.  If  
co is any non-zero invariant volume form on N one has g(w)= )~(g)w, for g E P, for a 
character ~ on P; moreover there is an integer r > 0 such that )C- mr on T. Consider 
now the homomorphism I)C I : lIvesP(kv)=P --+ R + given by t ~ 1  (x)= I)~(x) I .  
Let 0p denote the kernel of [ ~ [ . Then  there is a closed subgroup A C T such that 
I Xl maps a isomorphically onto [ )C [ (P)- The group ] ~ [ (P) is all of R +, if char 
k = 0 while it is isomorphic to Z if char k > 0. It is well known that there is a maximal 

compact subgroup K C H ( =  rives H(ko)) such that H = K.P(=  K.A.~ The quotient 
0p/(0p M F) is compact. We introduce the following additional notation: for a real 
number  c > 0 ,  let A[c]={x  E a [ [ ~(x) I ~< c} and a (c )={x  E A [ [ )~(a) I < c}. 
If  ~ C 0p is any subset and c E R is positive, define F[~'I, c] =K.A[c] .~  (a "Siegel 
set"), and let F(g~, c) = K.A(c).a. For d < c let E(f~, C, C') =F[gl ,  c]\F(a,  c'). Note that 
E(~,  c, d) is compact. The following result is due to Borel [Bo] when char k=  0 and 
Harder  [Hal]  (see also Behr [Be]) when char k > 0. 

There is a finite subset Z in H(k) containing 1 and a real number  co > 0 such 
that the following holds: let ~ C 0p be any compact set with ~l(~ M F)= 0p and c > Co; 
then 

F[s c]ZF0 = H. 

Moreover the set {0 E Fo I F[f~, c]~0 N F[~ ,  c]l~ is non-empty} is finite. 
We fix a metric on H which is: 1) invariant under right translations under all of 

H and also under left translation by elements of K, 2) compatible with the topology 
on H and 3) makes H into a "path space" in the sense of 3.1; as has already been 
observed such a metric exists. Since E(~,  c, c') (c > c') is compact for compact ~ ,  we 
note that the set {x I d(x, E(Y~, c, d)) < M} is also relatively compact for any M > 0; 
consequently the set 

o = {0 E F0ld(E(a, c, c'), E(a ,  c, c')0) < M} 

is finite. We need in the sequel the following assertion which is essentially known. 

Assertion. - -  Let Z,  c and ~ be as above. Let 8 > 0 be any constant. Then there exists 

c' > O, c' < c (depending on c, ~ and 8) such that the foUowing holds: i f  x , y  E F[~ ,  c], ~, q E 
and 7 E r0 are such that d(x~,yrB, ) < 8, then either n ' ~  -1 E N or x , y  E E(s c, c'). 

We outline a proof of the assertion. Let q = dimN and V be the qth exterior power 
of h (= Lie algebra of I-I). Then  V decomposes (under the natural representation of 
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H) into eigenspaces for T over k. The  weights of  T acting on V are necessarily of 
the form at, t E Z; the highest and the lowest of  these weights are then ;~(= cz ~) and 
X-l(=o~-r) respectively and the corresponding weight spaces are of  dimension 1. Let 
II II be a K-invariant norm on V =  I-Les V(k~). Now we assume - as we may - that 
V(k) has a k-basis ~ containing weight vectors e and f corresponding to X and ;C-l, 
respectively, such that F0 stabilizes the ~'s-span of .93 ~ . Suppose now that x, y, {, 11 
and ~ are as in the assertion. Then  one has 

x~ = gy.rff 

where g is in a compact subset of  H determined by 5. Suppose now that r l ~ - I  r N; 
then rl~/~-l = n'cp where p E P(k), n E N(k) and "c is an element of H(k) normalizing T 
but not belonging to T(k). Such an element "c maps e into k.f  as is easily seen. As e 
belongs to qth exterior power of n (=  Lie subalgebra of h corresponding to iN-), pe E k.e 
while n f = f +  w where w belongs to the k-span of  weight vectors corresponding to 

weights other than ;~-1. Let x="k.a.u=~.u*.a where 7~ E K, a E A(c) and u* belongs to 
compact subset ~* of 0p (depending on c and f~). Similarlyy=k'u'*a', k' E K, d E A(c) 

and d* E g~*. Clearly then one has a constant 13 > 0 such that ]]xel] ~< ~31x(a)lllel] . On  
the other hand, x=gy.'qT{ -1. Since 11, { E E a finite set and F0 stabilizes the ~s -span  
of  ,r ~ , we see that there is a P E ~ s  such that P ~: 0 and 

( r l ~ - l ( ~ s  span of ~ )  C XFoE(Os span of ~ )  

C p -  1 (~s  span of ~ ). 

Since ze E k .f ,  one sees that rlT~;-le is of  the form p- i t  . f +  wo with t E ~'s and 

pw0 in the ~s -span  of weight vectors other than f Note that there exists some g > 0 

(depending only on p and f )  such that for any t' E ~ s  we have [[p-10~[[ i> ~, Now 
gy=g/(u'*a' and g/f d* belongs to a fixed compact set. We see thus that there is a 
constant 13' > 0 such that [[gl(u'*(w)[[ >>. ~'llwll. It follows that 

[[xe[[ = [[gyqyg-~e[I 

= [[gk'u'*a'nTg -~ e[[ 

- l e l l  =  'lla'(p w0)ll 

 13' II a'p-1 o ll : 13'z(a') lip -1  r 
i> lYC-r'  

since •(a') ~< c. This leads to the inequality 

X(a) ) 13-1B'c-'~[[e[] -1 

and analogously reversing the roles of x and y 

z(a')  
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We need  only choose d = ~-l~,c-r~llell_l to obta in  the assertion. 

With  the assertion established we now go on to prove (4.7). Fix a 8 > 0 and  
choose d > 0 as in the assertion. Let  F = F[f~, c] and  E = E(~ ,  c, c~). Let  

B = max  (8, d iameter  E) 

and  set 

OB = {7 E Fold(E, ET) ~< 2B}. 

T h e  set OS is finite. Suppose  now 7 E F0 with d(1, ~/)= [~/I ) 2B. T h e n  we can find 
hi, 0 <~ i<. n in H with ho= 1 and  hn=~' such that o~(hi, hi+l) < 8 / 2  and  

d(1, V) ~< ~ d(hi, hi+l) 
O<~i<n 

~< d(1, y) + 8/4.  

Passing to a subset  of  ho, ..., h, we can in fact assume that 

8 / 4  <. d(hi, hi+l) < 8. 

Let  J = {0 =/o < il ... < ir = n} be  the subset o f  [0, n] consisting of  those integers j for 
which �89 E EZF0. We set gt = hi t �9 Also for each i, 0 ~< i ~< n pick elements xi E F,  t i  E Z 
and  Yi E F0 such that hi = xitz'Yi and  xi E E whenever  i E J;  we assume - as we m a y  - 

that  x0 = x, = 1, t0 = ~l = 1, Y0 = 1 and  y, = y. We also set for 0 <<. g <~ r, y t  = xi t , tit  = t i  t 
and  Ot =Yi~ so that  ge =yt~eOe. 

Claim. - -  d(ge, gg+~) > 5 /4 .  This is clear i f  i f+ 1 -- ig -t- 1. Suppose then that it+l > it + 1. 
Let ~ = ~0,<i<ie d(hi, hi+~) while g = ~i~+1,<< . d(hi, hi+l). Then one has 

d(1, 7) + 8 / 4  >~ ~. + g + E d(hi, hi+l) 
ig <~ i<ig + l 

~> ~ . + g + 8 / 2  

since there are at least two terms in the last summat ion  each o f  which is > 8/4.  O n  
the other  hand  

d(1, ~t) ~< E + g + d(ge, ge+~) 

by triangle inequali~.  We thus find that  

E + g + d ( g e , g e + O  >1 E +  g +  8 / 4  

so that  d(ge, g~+l)/> 6/4.  H e n c e  the claim. 
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Suppose now that g is such that 0 ~< g < r and that d(ge, ge+l) <~ 2B. Then  one 

d(EZ, EZ0e+10~ -1) ~< 2B 

so that 0e+10e -1 E OB. Since 19B is finite and d(gg, ge+l)/> 8/4 as well, there is a constant 
g > 0 such that 

d(ge, ge+l) >1 I.td(1, 0e+10el). 

We will establish a similar inequality also in the case when d(ge, ge+l) > 2B. In this 
case one has necessarily ie+l > ie + 1; consequently hi ~ EZF0 for ig < i < ie+l. It follows 

-1 -1 - I  --1 
now from the assertion that ~iTi'~i_l~,i_l and ~i+lTi+1"~i ~i belong to N for ie < i < ig+l. 

We conclude from this that rle+10e+10elrl~ -1 E N. Moreover one has: 

d(g~ , ge +l) = d(yerle , ye +lrle +lO~ +lO~ 1) 

>i -d(yerle , ye +l rle +l) 

+ d(ye+~rle+l ,ye+lrlg+lOg+lOg 1) 
-1 - i  

/> - B  + d(1,ye+lrle+~0e+lO e (ye+lOe+l)) 

/> - B  + g'd(1,0e+10) -1) 

for a suitable constant g' > 0; since d(ge, ge+l) > 2B, one sees that 

d(ge, ge+l) >1 2g'd(1,0e+10el)/3. 

We see thus that if we set v = rain (g, 2B'/3), 

d(ge, ge+l) >1 vd(1, Og+lOg -1) 

for 0 ~< g < r. Since for elements of  N C) F0 the word metric and d are equivalent we 
conclude that 

Z d(gg, gg+l) /> V Z d(1,0g+10g -1) 
0<~g <r 0~<g <r 

>/v'(length ~/) 

(where length ~, is referred to some finite set of  generators of  F0). On  the other hand 
we know that 

~_, d(ge, ge+l) ~< d(1, T) + 5/2. 
O<~g <r 

This shows that the word metric is dominated by d. 

We refer the reader to [LMR] where a similar lemma is proved in a more 
geometric language for the special case where H is an SL(2, R) in G = SL(n, R). A 
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similar "geometric" argument  applies in the characteristic zero case to any rank one 
H < G .  

(4.8) Lemma. - -  Let (3 be an absolutely almost simple k-group, G = 11 (3(ki) of rank >. 2 
and F < G be an S-arithmetic subgroup of G. Suppose that P 91F/s (dw, dR)-undistorted for every 
maximal k-parabolic subgroup P of G. Then F /s (dw, dR)-undistorted. 

We postpone the proof of (4.8) to (4.10) showing first how (4.8) implies 
Theorem 4.1. 

(4.9) Proof of Theorem 4.1. - -  We prove Theorem 4.1 by induction on k-rank of 
G. When  k-rank G = 0  this follows from (3.2). When k-rank G =  1 Theorem 4.1 is 
immediate from (4.7). Thus the start of  the induction is secured and we assume as 
we may that k-rank G/> 2. Let P be a maximal k-parabolic subgroup of G. We need 
only show that P V/F is (dw, dR)-undistorted. Now P = M U where M is a connected 
reductive k-subgroup and U is the unipotent radical of  P. Theorem 3.7 tells us that 
U fl F is (dw, dR)-undistorted. Since (M M 1-)(U N 1-) has finite index in P VI F it suffices 
to show that M V/F is (dw, dR)-undistorted. Now M = 13 M'  where M ' =  [M, M] and 
121 is a k-torus in the center of  M. Further t21 = 13s 13a where 13s is split over k and 
C a is anisotropic over k. Moreover, (CaM I)(M' M 1-) has finite index in M M F and 
(C a M F) VI (M' fl F) is finite. Now Ca/C a A F is compact so that C a 7/F is undistorted 
in C a while C a being a torus is undistorted in G. Thus C a M F is (dw, dR)-undistorted. 
We see thus that it suffices to prove that M ' V / F  is (dw, dR)-undistorted. Now k-rank 
M'  > 0. If  k-rank M'  = 1, this follows from (4.7). If  k-rank M'  > 1, we know by the 
induction hypothesis that M ~ M F is undistorted in M'. As M' is undistorted in G, M' M F 
is undistorted in G, hence (dw, dR)-undistorted. 

(4.10) Proof of (4.8). - -  As the proof  of (4.8) is rather technical it may be useful 
to sketch its main steps for the special case of SL,(Z) < SL,(R). Let P < SL,(R) be the 
maximal parabolic subgroup consisting of the stabilizer of  Re1 in the natural action of  
SL,(R) on R n. Given an element ~/E SL,(Z) we would like to multiply it by elements 
of  "controlled" length to bring it into P V/SL,(Z). To this end we have ~= u-p where {(1 /} 

* 1 

p E P f'l SL,(Q) and u- E U - M  SL,(Q), where U - =  * 0 1 . (This 

* 0 1 
decomposition exists whenever the (1, 1) entry of  "f is nonzero which we may assume 
without loss of  generali~.) By multiplying by some appropriate g E U -  f'l SL,(Z) we may 
assume that u-  belongs to a fixed compact set. Had  u- belonged to U -  fl SL,(Z) we 
would have attained our goal. As this is not always the case we have to use a certain 
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induction argument.  Let F(3') E Z \ { 0 }  be the (1, 1) entry of 3' (and hence also of  p). Its 
absolute value IF(3')I serves as a measure to the "failure" of  u- to be integral (IF(T)r is the 
c o m m o n  denominator  of the entries of u-). In order to argue by induction on IF(3')I we 
need to show how by multiplying 3' by some element 0 E SLn(Z) of controllable length 
we get a new element  0'/ s.t. IF(0 )l < IF(3')l. Iterating this procedure we eventually 
"push" 3' into P M SLn(Z). For constructing an element 0 as required observe that 

b 
for ( ~  bd)E SLn(Z)we have (c)a 0 1 ) ( ;  a - 1 ) = ( ~  bd)hence i f w e  have 

c a  1 
u- = with a > 1 hen an element  0 -1 = E SL2(Z) C SLn(Z) 

1 
satisfies the required properties and IF(~)I-  1/a .  IF(3')I. Clearly similar a rgument  works 
using other entries in case the (2, 1) entry of u- is integral. In the general case 
the role of the (2, 1) entry of U -  is played by an element u ( -a )  belonging to 
the root group corresponding to the root -0~ (where (x is the root associated with 
the maximal  parabolic subgroup) s.t. u - =  u(-o~)u(~2)... U(g)r). We show how one may  
ensure (by multiplication by an element  of  a fixed finite set) that u ( -a )  has a large 
denominator.  This enables us to reduce IF(3')I by multiplication by some controllable 
element belonging to the intersection of F with the rank one subgroup corresponding 
to the root a. 

We return now to the proof  of  (4.8). 

Let T be a maximal  k-split toms of G. We can assume T is of dimension 
/> 1, since otherwise G is k-anisotropic in which case F is cocompact  in G, and 
hence undistorted in G. Let �9 be the k-root system corresponding to T,  11 C �9 a 
simple system of roots. We denote by N(T) and Z(T) the normalizer and centralizer, 
respectively, of  T.  Let W = N(T)/Z(T) be the corresponding Weyl group of G. We may  

assume that  there exists a set -~r C F of representatives of W. Here is a sketch of  
the ideas in showing the existence of a commensurable  lattice which contains such a 
set of representatives: Let ~ ' =  {~0 E �9 [ 2(I) r q)}. Let G' be the k-subgroup of  G 
generated by the root groups U~, q~ E ~ ' .  The  groups G and G' share the k-split 
torus T. The  inclusion G' C G induces an isomorphism of  the corresponding Weyl 
groups. Let F t < G be an S-arithmetic lattice and t : G ~ GL(V) an embedding  
of G as a k-group (where V is a k-vector space). The  induced embedding  of G'  in 
GL(V) is also a k-embedding. The  lattice U leaves invariant some finitely generated 
~s-submodule  L of  V(k). I f  F' contains a full set of  representatives of W so does the 
lattice F = {~/E G(k) [ ~L = L}, clearly F' < F. The  root system of  G' is reduced. For 
each ~ E 11 choose an element x~ E U~(k) different from the identi~. By a theorem of 
Borel and Tits [BT1] there is a unique split semisimple k-subgroup G" of G' sharing the 
split torus T and containing the elements x~, [~ E H. The  argument  above for reducing 
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the problem to finding an appropriate lattice in G' applies to reduce the problem 
to finding a lattice in G" containing representatives of W. Thus we are reduced to 
the case of a Chevalley group. The k-rational points of a semisimple Chevalley group 
contain a finite group which contains representatives for W. As this finite group is in 
the commensurability group of our lattice it normalizes a sublattice of finite index and 
we can add it to this sublattice to generate a lattice as required. 

For any root go E ~,  let U~ be the corresponding root group. Let U~ = U~ in 

case 2go is not a root, and U~ =U~/U2~ in case 2go is a root. In both cases U~(k) 

is a k-vector space. We denote by L~ the image of Ut,(Os ) in U~(k). Let L~ be the 

maximal ~s-submodule of ~ ( k )  contained in L~. /~ is finitely generated projective 
! Gs-submodule, of finite index in L~ and span t)t,(k ) as a k-vector space. Let ~g0 E 

be the highest root (with respect to the order determined by 11). For go E �9 and [3 E 11 
let m(go, [3) E Z be defined by go = ~ E r I  m(go, ~)13. Choose a simple root cx E 11 so that 
the following conditions are satisfied: 

(1) m(~0, or) ~< m(gt0, ~) for every ~ E 11. 
(2) If  the root system �9 is not reduced then a is the unique short root in 11. (In 

this case, this is compatible with the first condition.) 

Denote by @_(a)= {go E @ I m(go, or) < 0}, @'_(cx) = {go E @_(0t) I lgo ~/@}. Using 

the classification of root systems of simple Lie algebras one can check that this choice 
of the root ot implies that for any go E q~_(o0, m(go, o~) E {--1, - -2} .  Let P be the 
maximal parabolic subgroup of G determined by the root 0t. Let P = M U +, where M 
is reductive and U + is the unipotent radical of P. Let U -  be the opposite of U +. A 
root go E q~ is M-dominant  if it satisfies (go, [~) >/ 0 for all [3 E 11 different from or. 
Note that M is generated by {U~ I m(go, {x) = 0} together with the centralizer of T. 
Let W ( M ) =  N~(T)/ZM(T) be the k-Weyl group of M. It is naturally embedded in W. 

Let W(M) C ~r  be the elements representing W(M). Enumerate the roots in ~'_(ot) in 
decreasing order (with respect to the order determined by 11): qY_(0t)= {got, go2, ..., go~}. 
Note that in completing the partial order determined by 11 to a linear one we can 
make sure that if m(goi, ~ )  = - -  1 and m(goj, 0~)  = - -  2 then i < j .  We have go! = - 0t. If  goi 
is M-dominant  and w E W(M) then goj = wgoi satisfies i ~<j. 

We have U-=U~IU~2...U~o r and the map U~I x U~2 
(Xl, x2, . . . ,X r) ---+ XlX2 ...Xr is a k-rational isomorphism. For u E 
goi E (Ilt-(O{), b y  U-'U(gol)U(go2)...U(gor ) where each u(goi) E Ut, i(k ). 
denominator Den(x), of an element x E U-(k), as follows: Let 

go E q~_(o~). If  2go is not a root then x E Uto(k ) = {)~(k) viewed 
Define the ideal I(x)= {t E ~s  I tx E L~}. Let Den(x)= #(Os/I(x) 

a k-section s~o : U~(k) --+ U~(k) of the natural projection map ~ 

x . . . x U ~  --+ U-,  
U - ,  we define u(goi), 
We shall define the 
x E U~(k) for some 

as a k-vector space. 
). If  2go is a root, fix 

: U~(k) --+ l~l~(k). Let 
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x' = s~(n~(x)) and  x" = x ' - ' x  �9 U2~(k). We have the ideals I(n~o(x))= {t �9 ~ s  [ ~o(x) �9 I~} 
and I(x")= {t �9 ~ s  [ tx" �9 L2~}. Set Den(x)=  max{#(~s/I(rc~(x))), #(Os/I(x"))}.  For 
u �9 U-(k) its denominator  is defined to be Den(u)=  max{Den(u(q))) [ q0 �9 ~'_(a)}. A 
subset of U-(k) bounded  in U - ,  whose elements have denominators  bounded  by a 
constant is finite. Notice that since for every q0 �9 ~_(oc), m(q0, oc) E { -  1, - 2} it follows 
that U- i s  at most  two step nilpotent. 

Let ~. be a weight of  G such that (~., ~ ) =  1 when [3 = o~ and 0 otherwise. Let 
Wz be the corresponding finite dimensional irreducible representation of G, and r the 
dimension of its highest weight space. Let Vz = /k r W~. and v = vz �9 Vz be an integral 
highest weight vector. Let V;. be the dual representation and v*= v~ the lowest weight 
vector of V;., s.t. (v*, v) = 1. Define a function F = Fz : G(k) ~ k by F(g) = (v*, gv). The  
function F is a character on P. Let fl  = U - M U  + an open dense subset of G, and 
let ga~=f~ V/G(k), a Zariski dense subset of  G. For g E f~ we write g = u - m u  +. Since 
U - ( ~ s )  = F V/U-  is a uniform lattice in U - ,  there exists some 8 �9 F M U -  such that 
8u- belongs to a fixed compact  fundamental  domain  for U -  71 F in U - .  Define 9(g) 
by 0(g) = II ll. As U -  n r is discrete, p has values in a discrete set and it is minimal  
for 8 = e. We rescale it so that p(e)= 1. 

(4.11) Lemma. 

(i) a = G \ { V =  0}, 
(ii) k[a] = k[O] [l /F],  
(iii) For "/C F M ~,  /et y = u- mu + with u-  C U -  (k), m C M(k) and u + C U + (k). Then 

the denominator Den(u-)  is bounded by a p@nomial in [F(~')[*. 

Proof Let ~ be a maximal  torus of G containing T and �9 the root system of 

G with respect to ~.  The  torus ~ is contained in M and hence in P as well. Fix an 

order on the character group of ~ such that for ~ E ~ ,  [3 is positive if ~ restricted to 

T is positive. Let "~ (resp. "~(M)) denote the Weyl group of  G (resp. M') with respect 

to ~.  From the work of Kostant [Ko] one knows that there is a subset S C "~ such 

that S maps bijectively onto ~r/'~((Nl) and for w E ~r, the singleton (wW(NI')71 S) is the 

unique element  w0 in w'~q(M) with the property that all the root spaces corresponding 

to the positive roots [3 E ~ such that w0(~) < 0 are contained in the Lie algebra u + 

of  U +. We denote by h([3) the root space of ~ E ~ in the sequel. Suppose now that 

w C ~r, w r '~(M); then w = wo.w' with w ~ C ~r(M) and for 0 < ~ E ~ ,  if w0(13) < 0, 
then h([3) C g§ Suppose then g E G(k), k an algebraic closure of k. T h e n  one has 

g z  U-W e 
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where u- E U-(k), w E S and p E P(k). Hence 

F(g)= < v * , g v > =  <v*,  u - w p v >  

= t < v * , w v >  , t ~ : 0 .  

Now ~ is an eigenspace for all of T since _u + is T-stable. Consequently w~.v) is 

an eigenspace for T as well. This last eigenspace coincides with }v, if and only if w 
maps each root space h(~) C u + into a _h([Y) C _u +. But then w does not change the sign 

of any [3 E ill, ~ > 0 with _h([3) C _u+; this means that w must be the identity element. 

Finally all the eigenspaces of T other than kv, are orthogonal to v*. Thus F(g) 5 k 0 if 
and only if w = identi~, i.e., g E U - P .  The first two assertions are immediate from 
this. Also since the map, 

~ 2  : U -  x M x U+ ---~ f~ 

given by (u-, m, u +) ~ u - m u  + is an isomorphism (over k), its inverse is also defined 
over k. Since the coordinate ring of f~ is identified with k[G] [1/F], assertion (iii) follows. 

(4.12) Remark. - -  To prove (4.8) we need to show that every y E G(Os) can be 
written as a word of length O(log [[vll). It suffices to show this for y E F V/f~k since a 
finite number  of translations of g& by elements of G(~s)  covers G(~s).  

(4.13) Lemma. - -  There exist positive constants A ,  B and C so that for all y E F Yl ~k,  

dw(y, e) ~< a l o g  [[yl{ + Blog [F(7)I* + C logp(y). 

(4.14) Remark. - -  Note that IF(T)I* and 9(y) are bounded polynomially by IIYII, so 
the lemma actually says that dw(T, e)= O(log INI). For the proof, however, it is more 
convenient to use also F(y) and P(T). 

(4.15) Proof o f  (4.13). - - D e n o t e  /(y)=dw(y, e). Since both IOsI* and p(F) are 
discrete we can argue by induction on [F(Y)I* and P(T)- 

Let y E F 7/ ~k and y = u - m u  +. Let ND be a fixed constant (to be determined 
later). Lemma 4.11 (iii) implies that there exists a constant NF such that if IF(y)l* ~< NF 
then Den (u-) ~< ND. There exists a finite set Q of elements of U~- such that if y =  u - m u  + 

satisfies Den (u-) ~< ND and 9(Y) = 1, then u- E Q. Choose a fixed set Q. of elements 
of F V/~k whose U -  parts represent all elements of Q. Thus if Den (u-) ~< ND and 

9(Y) = 1, then by multiplying y by the inverse of a suitable element y of ~ we have 
y - l y  E P = M U .  As P is a proper k-subgroup of G,  P M F is (dw, dp,)-undistorted so 
y - l y  is efficiently generated and so is y, i.e., there exists a constant A0 such that (4.13) 
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holds for elements ~,= u-mu + E FM~k which satisfy Den(u-)  ~< NI) (hence in particular 
those satisfying IF(~')I * ~< Nv) and p(~/)-= 1 provided a / >  A0. 

If  P(~') > 1, let ~ be the element of F M U -  as in the definition of P(~') in (4.10). 
The element 87 satisfies F(&/)= F(y) and p(8~,)= 1 < 9(% So we can apply the induction 
hypothesis to deduce: 

l(y) ~</(8 -1) + l(8~t) ~< 1(8) + Alog [[&~, H + B log [F(8~,)I* 

+ C log p(fr)') ~< l(8) + Alog II~'ll + Alog 1lsII + Blog IF(~I* + C.  0 

C u- l og  11811 + mlog I1~11 + g log  IF(~,)l* + mlog 11811 
- -a log Ih'll + glog IF(~)l* + (C~- + e)log p(~,). 

This proves the claim for ~t provided C was chosen to be bigger than Cu + A 
where Cv- is the implied constant for U -  by (4.3). 

Hence we can assume that p(~,)= 1. 

(4.16). - -  Recall (see 4.10) that U -  is a product of root groups, U -  = 1-IeE,,_(~) 

U,  = U_~ .  l-I;= 2 U,i (q~l = - u). 
As in 4.10, u- E U -  may be written as U-=U-(Cpl)U-(Cpg)...U-(Cpr) where 

u-(cpi) E U~i. Let ul = u-(cpl), u2 = U-(CPZ)... U-(CPr), hence u - =  UlU2. 

(4.17) Lemma. - -  Let N1 > 0 be a given constant. There exist ND > O, a bounded subset 

K3 of U_~(k) and a finite set Q of  elements of  G(~s) such that i f  y E F M f~e, ~t = u-mu +, 
satisfies 9(~t) = 1 (or more generally u- belongs to a fixed compact subset of  U - )  and the denominator 

of  u-  satisfies Den(u-)  > No, then for some q E Q we have qT=uomoUo, Uo(-Ct ) E K3 and 
Den(uo( -~ ) )  > g~ (notation as in 4.10). Moreover IF(~)l* -IF(~)I*- 

(4.18) Remark. - - W e  shall postpone the proof of Lemma 4.17 to (4.23) and 
continue with the proof of Lemma 4.13 assuming Lemma 4.17. The choice of N1 will 
be made as in (4.20). 

(4.19) Lemma. - -  Let G ~ be the k-rank one group associated with the root or, P~ be the 

positive parabolic subgroup of  G ~, P ~ =  N=MaT ~ where N ~ is the unipotent radical of  P~, T ~ 
is the (one dimensional) k-split torus and M ~ is anisotrop# and commutes with T ~. There exists a 

finite subset Q of U_a(k) such that every u~ E U_=(k) can be written as u~ = 8sp where s E Q,  
8 E G~(O), p E P~(k). Moreover, p can be written as p = la where l is in a bounded subset of  

Na(k)M~(k) and a is in the split torus T'* Of G ~, so that-logllall <<, Kologl l /F(a) l* , for  some 
fixed Ko. (Note that it follows that the size of  p is controlled by [I/F(p)[* = [1/F(a)[*.) 

Proof. - -  It is well known that G'*(~)\G'*(k)/P'~(k) is finite [Bo]. Hence we 
can write Ul as ul =8's'p'  where p' E P~(k), 8' E G~(O) and s' is in a finite 

subset O~ of GU(k). If s' belongs to PU(k) then we can take s = e , p = s ' p '  and 
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]~=~'. Otherwise we have S' E Ua(k)wPa(k) where w is the non-trivial element of 

the Weyl group of (3 a. Hence  s '=u"wp" .  Take g = 8 ' w ,  s = w - l u " w  and p = p " p ' .  Let 
Q =  {e} t_J { w - l u " w  Is' = u " w p " E  O~}. Without  loss of generality, we can assume that 
w E 13a(~), since we could a priori replace the S-arithmetic lattice F =  G(~s)  by a 
commensurable  one containing a representative of w. Indeed,  by [BT1] the group 
(3a(k) contains a k-subgroup SL2(k) such that the usual torus of  SL2(k) coincides (0 
with the split torus of Ga(k). Hence  the element w = - 1  is a representative 

of the non-trivial element  of the Weyl group of  G a. w is of finite order 4. Let 

F = F  UI wFw -1 71 w2Fw -2 UI w3Fw -3. T h e n  w normalizes ~ and we have (1~, w) a 
commensurable  lattice as required. Notice that our group G satisfies the assumptions 
of Proposition 4.8 also with respect to this new lattice. 

The  above ]~, s and p satisfy the requirement  of the first part  of the lemma. To 
justify the second part, recall that the finite set Q is in the commensurabil i ty group of  
G~(G), hence there exists a finite index subgroup A of G~(~)  such that sAs -1 C_ Ga(O) 

for every s E Q. Let p =7"aa with "/E Na(k)Ma(k) and a E T a. There  exist a E T a and 

a' E T ~ MA such that a = a ' a  and logllall ~< K01ogll/F(a)l* for some fixed K0. (This 
follows from the fact that the elements of n o r m  (l" I*) one in O form a uniform 

lattice in the elements of n o r m  one in ks=.) Hence  we get ul = g s p = g s ~ ' a = g @ a  with 

]~' E G~(~) ,  ~ E N~(k)M~(k). Next we use the compactness of A f l  NaM~\N~M a to get 
ul = 8sla as required. 

(4.20) Lemma. - -  There exist constants ao < 1 and N1 such that if  Ks C U_~(k) is a 
bounded set as in 4.17 and Ul E K3 is an element whose denominator is bigger than N1, then i f  

U 1 =Ssp  as in (4.19), then IF(P)l * < a0 < 1. 

Proof. - -  Consider  the way ul acts on the highest weight vector v E Vx (see 4.10): 
Since Ul E U_a, UlV=V+ v' where v' is a weight vector of  weight r E - a  (note that 
the highest weight of V~ is rE). By our assumption the denominator  of  ul is large, 
hence the denominator  of d is large. (The "denominator"  of  a vector in Vx is in the 
natural way the least c o m m o n  multiple of  the denominators  of  its coordinate with 
respect to a fixed rational basis obtained from G(k)vx.) At the same time ul = 5sp ,  so 
UlV=~spv=F(p)Ssv .  This forces ]F(P)l* to be very small. Indeed,  s belongs to a finite 
set of U_~(k) and 8 belongs to the integral points t3a(O), hence {8sv}  is a discrete set 
(with respect to II lls~). O n  the other hand  Ul is in a bounded  subset of U_a(k). 

(4.21) Lemma. - -  There exists a constant K such that i f  u~ E U_a(k) is in a bounded set 

as in (4.17) and ul = S s p  as in (4.19), then max{logH~-~ll, logllNI } ~< Klogl l /F(p) l* .  

Proof. - -  Let p = / a  as in (4.19), so ul=8(sl )a .  As both ul and sl are in 
compact  sets, the size of  ~ is controlled by the size of  a. By L e m m a  4.19 we have 
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log[lal[  ~ K01og l l /F (a ) [* ,  h e n c e  for  sui table  K '  a n d  K "  

log[15[[ <~ K' logll /F(a)[* = K ' log  [1/F(p)[*. 

The second inequality follows from the fact that l is in a compact set. Since log [16 -1 [I 
is Lipschitz equivalent to log 11511, the lemma follows. 

(4.22). - - W e  can now complete the proof of (4.13). Let y = u - m u  + E F n~k ,  we 
need to bound l(?)= dw(7, 1). Let N1 be the constant determined by (4.20) and ND the 
corresponding constant implied by Lemma 4.17. As shown in (4.15), we can assume 
9(Y) = 1. We also show there that if Den (u-) ~< ND, then Lemma 4.13 holds for some 
constants. So we assume now Den (u-) > ND and that (4.13) holds by induction for 
smaller value of IF(7)[* 

Let q be the element given by Lemma 4.17 so that we have qff=UlU2mu + with 
ut having a denominator > N I .  Let ul =Ssp  be as in 4.19. 

IF( 5-1 qT)l* = IF( 5- '  u~u2 mu+)l * = IV(spuz mu+)l * = 

( , )  = [V(su'zpmu+)[ * = [F(p mu+)[ * - [F(pm)]* = [F(p)F(m)[* - 

= IF(P)I*IF(qy)[* = IF(P)I* IF(7)[* < [F(7)I*. 

Notice that u~ =pu2p -1 is in the maximal unipotent subgroup corresponding to the 
negative roots. 

We have the following inequalities: 

l(5- ~ q y) ~< a l o g  [[5-' q7[[ + B log [F(~ -~ qy)[* + 
(1) 

C logp(5-1qT)~.< Alog [[7[] + Alog [[5-1[[ + Alog [[q[[ 
(2) (**) 

+ B(log(lV(7)l* IF(P)l*) + C log p(5- '~)  

~< alog ][7][ + Blog IF(7)l* + Rlog 11/F0~)l*- Blog [ l/F(p)[*. 
(3) 

The  inequality (1) follows from the induction hypotheses. In inequality (2) we have 
used (*) and in (3) we choose R so that 

Alog [Iq[ [ + Alog [[6-111 + C p(5- '~)  ~ Rlog  [1/V(p)[*. 

Since 9(7) = 1 and q belongs to a fixed finite set it follows that ul u2 belongs to a certain 
compact subset of U - .  As 5-tqT=spu2mu + =su'zpmu + it follows that the size of p(5-1q7) 
(which is determined by the size of su~2) is controlled by the size of p. Combined with 
(4.21) this ensures the existence of such a constant R. 

We also have by (4.7), (4.20) and (4.21) that for a suitable constants S' and S, 

(* * *) l(q) + l(6) < l(q) + S'log [[5[[ < Slog [1/F(p)[*. 
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Thus  by (**) and (* * *): 

l(~) ~ l(q) + 1(8) +/(8- '  q~) ~< A log I I~/ll + B log I F(~/) [ * + ( R -  B + S) log I 1 / F(p) l*. 

Thus,  if we make sure to choose B bigger than R + S, (4.13) follows and hence 
also (4.8). As shown in (4.9), this finishes the p roof  of our main  theorem (4.1). 

(4.23) Proof of Lemma 4.17. - -  We are given an element  ~ = u - m u  + such 
that  u- belongs to a compact  subset of U -  and Den(u- )  is large, i.e., if we let 
U-=U--(q)l)U-(q)2)...U--(q)r) as in (4.10) then Den(u-(q)/)) is large for some 1 ~< i<~ r. 
Ou r  goal is to multiply 7 by elements belonging to a fixed finite set so that the new 
element  will have in the corresponding decomposit ion a large denominator  of the part  
belonging to U~I. We shall use the following lemmas: 

(4.24) Lernma. - -  Let K1 C U -  be a compact subset and M1 E N. There exist an 
integer M2 E N and a compact subset K2 C U -  so that i f  x E K b  x=x(q)~)x(q)2)...x(q)r) (as 

in (4.10)) and Den(x(q%)) >>. M2 for some 1 <<. io <~ r, then there exists w E ~r such that 

y = wxw -1 E K2, y =Y(q)~)Y(q)2)...Y(q)~), and Den (y(q)j))/> Ml for somej such that eitherj < io 
or j <<. io and q)j is M-dominant. 

Proof. - -  Since ~?(M) is a fixed finite set, there exists M2 E N such that if 

Den(x(q)i)) /> M2 then Den(wx(q)i)w -l)  >1 Ml(cM~) r for any w E ~q(M), where c > 1 is 
a constant chosen so that  if z E U~(k), z' E U~,(k) then Den([z ,  z']) ~< cDen(z)Den(z') .  
Without  loss of generality let 1 ~</0 ~< r be the first index such that Den (x(q%))/> M2. 
If  q)~ is an M-dominan t  root then the assertion holds (with w =  e). Otherwise let 

w E "~r(M) be the (unique) element  such that  w ~  = q),, 1 ~< n <~ r, is M-dominant .  

Let y = w x w  -1 =wx(q)l)w-lwx(q)2)w -1 ...wx(q)~)w - l ,  each wx(q)i)w -I E U~, i. Note that 

Den(wx(q)io)W -l)  >1 Ml(cM21) r > M1. We have to reorder the wx(q)i)w -1 to get an 
expression y=y(q)l)Y(q)2)...Y(q)r). Since U -  is (at most) two step nilpotent this process 
produces only new elements which are commutators  of the various wx(q)i)w-l's. In case 
wq)g is not  a sum of  two roots from ~_(a) theny(wq)g)= wx(q)io)W -! and the assertion 
holds (note that wq)g being M-dominan t  appears before q%). I f  wq)g may  be expressed 
as a sum of two roots, say uxp~ = q)+ q)' then either for some such q) we will have 
Den (y(q))) > M1 and the assertion holds - note that such q) necessarily precedes wq)g 

and hence also precedes q)g, or for all these roots q), Den(wx(w-lq))w -1) ~< Ml.  This  

implies that their commuta tor  has denominator  at most  cM21. As the number  of  such 

roots is at most  r (actually much  less), and  Den(wx(q)io)W -1) >1 Ml(cM21) ~ it follows that 
Den(y(w~g)) /> M1 as required. Note that  in the above we have used the fact that 
m(q), o~) E { - 1 ,  - 2} for q) E ~_(a), which guaranteed that  a root in ~'_(a) is at the 
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sum of no more than two other roots in ~'_(c~). The  existence of the compact  set K2 
is clear. 

(4.25) Lemma. - -  Let cp E ~_(~) be a root such that (% a) < 0 and 2~ is not a root. 

For z E U~(k) let Cz : ~ ~ ~ + ~  be d~ned as follows: Given x E ~ =U,(k), we have 
z x z - l x  -1 E U* - the algebraic subgroup generated by {Um~0+,,~ I m, n E N,  m(p+na E ~ } .  Let 
U*' = < Um~+,~ ] m, n E N,  m + n/> 3, m~0 + no~ E �9 >. There is a natural identification of  

~ + ~  with U*/U*' .  Let Cz(x) be the image of  zxz-~x -!  under this ident~cation. I f  2(q0 + c~) is 
not a root and z ~- 1, then C z is injective. I f  2(q0 + o~) is a root, 2a  is a root; i f  y ,  z E U~(k) are 

such that yzy-~ z -~ ~- 1, then Cy | C z : ~J~ ~ U~+a | ~J~+a is injective. 

Proof. - -  Since U~ and U~o§ are vector spaces over k, it suffices to show that 
the maps in question are injective at the level of k-points. Let G ~ denote the k-rank 
2 subgroup generated by U •  and U• and q~ the root system of  G' with respect 
to the torus T '  (= identity componen t  of  G ' N  T). It is easily checked - using for 
instance the classification of rank 2 root systems - that {q0, ~} constitute a simple system 
for q~. Consider first the case when is reduced. I f  z E E~ = U~(k) and x E E~ = U~(k) 
are non-trivial elements, then there is a Chevalley group over k contained in G' 
and containing T ', z and x; and our contention is immediate  from the Chevalley 
commuta t ion  relations. Suppose q~ is not reduced; then, as is easily checked, 2o~ as 
well as 2(q~ + c~) are roots. Let G" be the k-subgroup of  G' generated by {U• U• 
T h e n  q~'= {~ E qJl2~ ~ ~ }  is the root system of  G" and the preceding discussion 
shows that 

where [y, z] = y z y - l z  -1, is injective. Now we have the commuta tor  identity of  P. Hall: 

[ b ,  z], [[z, x], [ [x,A,yz] = 1. 

One sees easily from this identity that if Cy �9 Cz is not injective, C[y,zl is not injective 
either. This proves the lemma. 

As a consequence we have: 

(4.26) Corollary. - -  Let K C U-(k) be a bounded subset and an integer MI > 0 be given. 
Let q)io E ~'_(o~) be an M-dominant root linear~ independent of  o~. There is a finite set J c G(~s), 
a bounded set K ' C U-(k) and an integer M2 > 0 such t ha t / f x  = x(q~l)X(q%).., x(q)r) E K C U-(k) 
satisfies Den (x(cpl) ) < M1 for all roots % 1 ~ i < io <, r and Den (x(q%))) M2, then there 
exists an element g E J such that gx = uab with u E K' ,  a belongs to the unipotent subgroup of  
M generated by the negative roots, b E Ua and u = u(cp~)u(cp2).., u(cpr) with Den (u(cpj)) >1 M1 for 
some j < io. 
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Proof. - -  Since the root q0 = q0/0 is a negative root which is M-dominant  it follows 
that (a ,  q0~) < 0. Moreover one can check by considering the rank 2 root system 
E obtained by looking at the roots in q~ lying in the linear span of ~ and q% that 
{o~, q0~} is a simple system for Z. In the non reduced case Z is of  type BC2, o~ is 
a short root and q0/0 is a long root and in particular 2q0~ is not a root. Hence the 

conditions of Lemma 4.25 are satisfied. Let K C U-(k) be a bounded subset such that 

if x E K then X(lpl)...X(~io_l) E ~ .  Let D = { v  E K C U-(k) I Den(v) ~< Ml}. D is a 
finite set. If  2(cp + a) is not a root, for any element v E D, we choose an element 

f ( v )  E G(~s) such that f(v) E U ~ ( ~ s ) \  U2~(~s) and v f (v )v  - I  E G(~s). If  2(q0 + cx) is a 
root choose elementsf(v),  g(v) E U~(~s) \U2~(~s)  such that [f(v), g(v)] :~ 1 and vf (v)v  -1 
and vg(v)v-' E G(~s).  Let J = {v f ( v ) v  -~ [ v E D}. Let x E K be the given element. Let 
v= x(q01).., x(~%_~). By the assumptions v E D. Consider the elements 

v h ( v ) v -  l x -_ vh(v)x(q) io)  . . .  X((pr) 

= v(h(v)x((Pio)h(v)-'x((Pio)-l)x((Pio)h(v)x((Pio+,).., x(Cpr) (#) 

where h(v) denotes f (v )  or g(v). We can write h(v)x((Pio)h(v)-lx((P~o) -1 =YtY2 where y~ E 
U%+,(k) andy2 belongs to product of  other root groups (corresponding to combinations 

of the form n(p~)+mcq where n, m E N). Lemma 4.25 implies that there exists a constant 
M2 E N so large that under the assumptions of the corollary the denominator o f y l  

will be larger then M21 (note that we are using the fact that 2q% is not a root). Taking 
h(v) to be one of g(v) or f ( v )  as we conjugate h(v) in (#) through the rest of  the terms 
x((p~+l) ... X((pr) we will obtain 

. . .  X( r) = Z l  Z2 . . .  Z s h ( v ) .  

Where the various zi belong to root groups corresponding to roots of  the form m(pi+no~, 
i > ~ and m, n E N. We can reorder the product so that 

vh(v)v-' x = vyty2x(~Pio)Z, ... z,h(v) = vyty2x(~pg)h t2 ... t, ah(v). 

Where a belongs to the unipotent subgroup of M corresponding to the negative roots, 
the ti's belong to root groups Uv(k ) where ~ is a linear combination with nonnegative 
integer coefficients of  a and roots q0j where j > /0 and ~t E ~_(a). Next we can 
express the element u=  vyty~x(cp~)ht2 ... t~ as u=  u(q~l)u(cp2).., u(q)r). Using the above and 

the ordering of the roots one can check that u(q0g + o~) = x(q% + a)y~. As Den(y1)/> M2~ 
and Den(x(q% + a)) ~< M1, we conclude that Den (u(q% + a)) /> MI. Clearly the root 
~pg + o~ precede, in our ordering, the root q0/0. The  existence of a bounded set K ~ as 

required is clear. 

Repeated use of Lemma 4.24 and Corollary 4.26 yield the existence of a finite 
set Q c H(~s)  as required in Lemma 4.17. The existence of the required bounded 
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subset Ka C U-(k) is clear. To verify that for q E Q one has [F(~)[* = [F(~')[*, note that: 

(i) "~((M') is contained in the semisimple part of  M and hence for w E ~7r we have 
]F(w)]* = 1. (ii) Applying Corollary 4.26 multiplies the "M part" of V by ab where a 
belongs to the unipotent subgroup of M generated by the negative roots and b E U=(k). 
Using the definition of F(.) it follows that it remains unchanged. 
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