142 research outputs found
Implementation of the 2017 Berlin Concussion in Sport Group Consensus Statement in contact and collision sports: a joint position statement from 11 national and international sports organisations.
The 2017 Berlin Concussion in Sport Group Consensus Statement provides a global summary of best practice in concussion prevention, diagnosis and management, underpinned by systematic reviews and expert consensus. Due to their different settings and rules, individual sports need to adapt concussion guidelines according to their specific regulatory environment. At the same time, consistent application of the Berlin Consensus Statement's themes across sporting codes is likely to facilitate superior and uniform diagnosis and management, improve concussion education and highlight collaborative research opportunities. This document summarises the approaches discussed by medical representatives from the governing bodies of 10 different contact and collision sports in Dublin, Ireland in July 2017. Those sports are: American football, Australian football, basketball, cricket, equestrian sports, football/soccer, ice hockey, rugby league, rugby union and skiing. This document had been endorsed by 11 sport governing bodies/national federations at the time of being published
Oceanographic conditions associated with white shark (Carcharodon carcharias) habitat use along eastern Australia
Management of species with wide-ranging migrations is a complex issue, made more challenging when the species is both protected and poses a risk to humans. Understanding the oceanic conditions associated with shark habitat use can help develop mitigation strategies or warning systems that meet both conservation and human safety objectives. Using satellite tracks from 77 juvenile and sub-adult white sharks tagged over 10 yr, we modelled individual movement patterns using hidden Markov models and applied generalised additive (mixed) models to explore correlations between movement patterns (presence−absence, habitat selection and behavioural state) and oceanographic and bathymetric variables. White sharks used the whole of the continental shelf, down to depths of 350 m on the continental slope. Sharks were present over a wide range of sea surface temperatures (SSTs; 10−27°C), with the highest probability of occurring at ~20°C. However, the number of average daily tag positions was greatest when SST was between 14 and 18°C, and sharks were more likely to exhibit area-restricted movement when SST was between ~19 and 23°C. Sharks were more likely to be present and selected habitats in productive areas with moderate to high surface chl a concentrations as well as thermal and productivity fronts. Although mesoscale eddies did not influence the likelihood of individuals being present in an area, there was a higher density of sharks in cold-core eddies compared to warm-core eddies. This study indicates that white shark presence and dispersal may be linked, perhaps via prey distribution, to oceanic conditions, potentially assisting development of suitable shark bite mitigation strategies
Deep learning resolves representative movement patterns in a marine predator species
The analysis of animal movement from telemetry data provides insights into how and why animals move. While traditional approaches to such analysis mostly focus on predicting animal states during movement, we describe an approach that allows us to identify representative movement patterns of different animal groups. To do this, we propose a carefully designed recurrent neural network and combine it with telemetry data for automatic feature extraction and identification of non-predefined representative patterns. In the experiment, we consider a particular marine predator species, the southern elephant seal, as an example. With our approach, we identify that the male seals in our data set share similar movement patterns when they are close to land. We identify this pattern recurring in a number of distant locations, consistent with alternative approaches from previous research
Temporal allocation of foraging effort in female Australian fur seals (Arctocephalus pusillus doriferus)
Across an individual\u27s life, foraging decisions will be affected by multiple intrinsic and extrinsic drivers that act at differing timescales. This study aimed to assess how female Australian fur seals allocated foraging effort and the behavioural changes used to achieve this at three temporal scales: within a day, across a foraging trip and across the final six months of the lactation period. Foraging effort peaked during daylight hours (57% of time diving) with lulls in activity just prior to and after daylight. Dive duration reduced across the day (196 s to 168 s) but this was compensated for by an increase in the vertical travel rate (1500–1600 m•h−1) and a reduction in postdive duration (111–90 s). This suggests physiological constraints (digestive costs) or prey availability may be limiting mean dive durations as a day progresses. During short trips (<2.9 d), effort remained steady at 55% of time diving, whereas, on long trips (>2.9 d) effort increased up to 2–3 d and then decreased. Dive duration decreased at the same rate in short and long trips, respectively, before stabilising (long trips) between 4–5 d. Suggesting that the same processes (digestive costs or prey availability) working at the daily scale may also be present across a trip. Across the lactation period, foraging effort, dive duration and vertical travel rate increased until August, before beginning to decrease. This suggests that as the nutritional demands of the suckling pup and developing foetus increase, female effort increases to accommodate this, providing insight into the potential constraints of maternal investment in this specie
Continental-scale animal tracking reveals functional movement classes across marine taxa
Acoustic telemetry is a principle tool for observing aquatic animals, but coverage over large spatial scales remains a challenge. To resolve this, Australia has implemented the Integrated Marine Observing System’s Animal Tracking Facility which comprises a continental-scale hydrophone array and coordinated data repository. This national acoustic network connects localized projects, enabling simultaneous monitoring of multiple species over scales ranging from 100 s of meters to 1000 s of kilometers. There is a need to evaluate the utility of this national network in monitoring animal movement ecology, and to identify the spatial scales that the network effectively operates over. Cluster analyses assessed movements and residency of 2181 individuals from 92 species, and identified four functional movement classes apparent only through aggregating data across the entire national network. These functional movement classes described movement metrics of individuals rather than species, and highlighted the plasticity of movement patterns across and within populations and species. Network analyses assessed the utility and redundancy of each component of the national network, revealing multiple spatial scales of connectivity influenced by the geographic positioning of acoustic receivers. We demonstrate the significance of this nationally coordinated network of receivers to better reveal intra-specific differences in movement profiles and discuss implications for effective management
Biomic Specialization and Speciation Rates in Ruminants (Cetartiodactyla, Mammalia): A Test of the Resource-Use Hypothesis at the Global Scale
The resource-use hypothesis proposed by E.S. Vrba predicts that specialist species have higher speciation and extinction rates than generalists because they are more susceptible to environmental changes and vicariance. In this work, we test some of the predictions derived from this hypothesis on the 197 extant and recently extinct species of Ruminantia (Cetartiodactyla, Mammalia) using the biomic specialization index (BSI) of each species, which is based on its distribution within different biomes. We ran 10000 Monte Carlo simulations of our data in order to get a null distribution of BSI values against which to contrast the observed data. Additionally, we drew on a supertree of the ruminants and a phylogenetic likelihood-based method (QuaSSE) for testing whether the degree of biomic specialization affects speciation rates in ruminant lineages. Our results are consistent with the predictions of the resource-use hypothesis, which foretells a higher speciation rate of lineages restricted to a single biome (BSI = 1) and higher frequency of specialist species in biomes that underwent high degree of contraction and fragmentation during climatic cycles. Bovids and deer present differential specialization across biomes; cervids show higher specialization in biomes with a marked hydric seasonality (tropical deciduous woodlands and schlerophyllous woodlands), while bovids present higher specialization in a greater variety of biomes. This might be the result of divergent physiological constraints as well as a different biogeographic and evolutionary history
Breast cancer treatment in clinical practice compared to best evidence and practice guidelines
Scaling of Activity Space in Marine Organisms across Latitudinal Gradients.
AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions
- …
