386 research outputs found

    Chemical Evolution in the Carina Dwarf Spheroidal

    Full text link
    We present metallicities for 487 red giants in the Carina dwarf spheroidal (dSph) galaxy that were obtained from FLAMES low-resolution Ca triplet (CaT) spectroscopy. We find a mean [Fe/H] of -1.91 dex with an intrinsic dispersion of 0.25 dex, whereas the full spread in metallicities is at least one dex. The analysis of the radial distribution of metallicities reveals that an excess of metal poor stars resides in a region of larger axis distances. These results can constrain evolutionary models and are discussed in the context of chemical evolution in the Carina dSph.Comment: 3 pages, 2 figures, to be published in the proceedings of the ESO/Arcetri-workshop on "Chemical Abundances and Mixing in Stars", 13.-17. Sep. 2004, Castiglione della Pescaia, Italy, L. Pasquini, S. Randich (eds.

    Long-term outcome prediction by clinicopathological risk classification algorithms in node-negative breast cancer—comparison between Adjuvant!, St Gallen, and a novel risk algorithm used in the prospective randomized Node-Negative-Breast Cancer-3 (NNBC-3) trial

    Get PDF
    Background: Defining risk categories in breast cancer is of considerable clinical significance. We have developed a novel risk classification algorithm and compared its prognostic utility to the Web-based tool Adjuvant! and to the St Gallen risk classification. Patients and methods: After a median follow-up of 10 years, we retrospectively analyzed 410 consecutive node-negative breast cancer patients who had not received adjuvant systemic therapy. High risk was defined by any of the following criteria: (i) age 2 cm. All patients were also characterized using Adjuvant! and the St Gallen 2007 risk categories. We analyzed disease-free survival (DFS) and overall survival (OS). Results: The Node-Negative-Breast Cancer-3 (NNBC-3) algorithm enlarged the low-risk group to 37% as compared with Adjuvant! (17%) and St Gallen (18%), respectively. In multivariate analysis, both Adjuvant! [P = 0.027, hazard ratio (HR) 3.81, 96% confidence interval (CI) 1.16-12.47] and the NNBC-3 risk classification (P = 0.049, HR 1.95, 95% CI 1.00-3.81) significantly predicted OS, but only the NNBC-3 algorithm retained its prognostic significance in multivariate analysis for DFS (P < 0.0005). Conclusion: The novel NNBC-3 risk algorithm is the only clinicopathological risk classification algorithm significantly predicting DFS as well as O

    Long-term outcome prediction by clinicopathological risk classification algorithms in node-negative breast cancer--comparison between Adjuvant!, St Gallen, and a novel risk algorithm used in the prospective randomized Node-Negative-Breast Cancer-3 (NNBC-3) trial.

    Get PDF
    Defining risk categories in breast cancer is of considerable clinical significance. We have developed a novel risk classification algorithm and compared its prognostic utility to the Web-based tool Adjuvant! and to the St Gallen risk classification. After a median follow-up of 10 years, we retrospectively analyzed 410 consecutive node-negative breast cancer patients who had not received adjuvant systemic therapy. High risk was defined by any of the following criteria: (i) age &lt;35 years, (ii) grade 3, (iii) human epithelial growth factor receptor-2 positivity, (iv) vascular invasion, (v) progesterone receptor negativity, (vi) grade 2 tumors &gt;2 cm. All patients were also characterized using Adjuvant! and the St Gallen 2007 risk categories. We analyzed disease-free survival (DFS) and overall survival (OS). The Node-Negative-Breast Cancer-3 (NNBC-3) algorithm enlarged the low-risk group to 37% as compared with Adjuvant! (17%) and St Gallen (18%), respectively. In multivariate analysis, both Adjuvant! [P = 0.027, hazard ratio (HR) 3.81, 96% confidence interval (CI) 1.16-12.47] and the NNBC-3 risk classification (P = 0.049, HR 1.95, 95% CI 1.00-3.81) significantly predicted OS, but only the NNBC-3 algorithm retained its prognostic significance in multivariate analysis for DFS (P &lt; 0.0005). The novel NNBC-3 risk algorithm is the only clinicopathological risk classification algorithm significantly predicting DFS as well as OS

    The Tension on dsDNA Bound to ssDNA/RecA Filaments May Play an Important Role in Driving Efficient and Accurate Homology Recognition and Strand Exchange

    Full text link
    It is well known that during homology recognition and strand exchange the double stranded DNA (dsDNA) in DNA/RecA filaments is highly extended, but the functional role of the extension has been unclear. We present an analytical model that calculates the distribution of tension in the extended dsDNA during strand exchange. The model suggests that the binding of additional dsDNA base pairs to the DNA/RecA filament alters the tension in dsDNA that was already bound to the filament, resulting in a non-linear increase in the mechanical energy as a function of the number of bound base pairs. This collective mechanical response may promote homology stringency and underlie unexplained experimental results

    A Survey of z>5.7 Quasars in the Sloan Digital Sky Survey II: Discovery of Three Additional Quasars at z>6

    Get PDF
    We present the discovery of three new quasars at z>6 in 1300 deg^2 of SDSS imaging data, J114816.64+525150.3 (z=6.43), J104845.05+463718.3 (z=6.23) and J163033.90+401209.6 (z=6.05). The first two objects have weak Ly alpha emission lines; their redshifts are determined from the positions of the Lyman break. They are only accurate to 0.05 and could be affected by the presence of broad absorption line systems. The last object has a Ly alpha strength more typical of lower redshift quasars. Based on a sample of six quasars at z>5.7 that cover 2870 deg^2 presented in this paper and in Paper I, we estimate the comoving density of luminous quasars at z 6 and M_{1450} < -26.8 to be (8 +/- 3)x10^{-10} Mpc^{-3} (for H_0 = 50 km/s/Mpc, Omega = 1). HST imaging of two z>5.7 quasars and high-resolution ground-based images (seeing 0.4'') of three additional z>5.7 quasars show that none of them is gravitationally lensed. The luminosity distribution of the high-redshfit quasar sample suggests the bright end slope of the quasar luminosity function at z 6 is shallower than Psi L^{-3.5} (2-sigma), consistent with the absence of strongly lensed objects.Comment: AJ in press (Apr 2003), 26 pages, 9 figure

    Structural parameters for the M31 dwarf spheroidals

    Full text link
    (Abridged) The projected structures and integrated properties of the Andromeda I, II, III, V, VI, VII and Cetus dwarf spheroidal galaxies are analysed based upon resolved counts of red giant branch stars. For each object, we have derived isopleth maps, surface brightness profiles, absolute magnitudes, central surface brightnesses, and a large number of other morphological parameters. Our analysis probes to larger radius and fainter surface brightnesses than most previous studies and as a result we find that the galaxies are generally larger and brighter than has previously been recognised. In particular, the luminosity of Andromeda V is found to be consistent with the higher metallicity value which has been derived for it. Andromeda I shows strong evidence of tidal disruption and S-shaped tidal tails are clearly visible. On the other hand, Cetus does not show any evidence of tidal truncation, let alone disruption. Andromeda II shows compelling evidence of a large excess of stars at small radius and suggests that this galaxy consists of a secondary core component. Comparing the M31 dwarf spheroidal population with the Galactic population, we find that the scale radii of the M31 population are larger than those for the Galactic population by at least a factor of two, for all absolute magnitudes. We also find that the two populations are offset from one another in the central surface brightness - luminosity relation. Finally, we find that the M31 dwarf spheroidals show the same correlation with distance-from-host as shown by the Galactic population, such that dwarf spheroidals with a higher central surface brightness are found further from their host. This again suggests that environment plays a significant role in dwarf galaxy evolution.Comment: 17 pages, 7 figures. Accepted for publication in MNRA

    A Keck/DEIMOS spectroscopic survey of the faint M31 satellites And IX, And XI, And XII, and And XIII

    Get PDF
    We present the first spectroscopic analysis of the faint M31 satellite galaxies, AndXI and AndXIII, and a reanalysis of existing spectroscopic data for two further faint companions, And IX and AndXII. By combining data obtained using the DEIMOS spectrograph mounted on the Keck II telescope with deep photometry from the Suprime-Cam instrument on Subaru, we have calculated global properties for the dwarfs, such as systemic velocities, metallicites and half-light radii.We find each dwarf to be very metal poor ([Fe/H] -2 both photometrically and spectroscopically, from their stacked spectrum), and as such, they continue to follow the luminosity-metallicity relationship established with brighter dwarfs. We are unable to resolve a dispersion for And XI due to small sample size and low S/N, but we set a one sigma upper limit of sigma-v <5 km/s. For And IX, And XII and And XIII we resolve velocity dispersions of v=4.5 (+3.4,-3.2), 2.6(+5.1,-2.6) and 9.7(+8.9,-4.5) km/s, and derive masses within the half light radii of 6.2(+5.3,-5.1)x10^6 Msun, 2.4 (+6.5,-2.4)x10^6 Msun and 1.1(+1.4,-0.7)x10^7 Msun respectively. We discuss each satellite in the context of the Mateo relations for dwarf spheroidal galaxies, and the Universal halo profiles established for Milky Way dwarfs (Walker et al. 2009). For both galaxies, this sees them fall below the Universal halo profiles of Walker et al. (2009). When combined with the findings of McConnachie & Irwin (2006a), which reveal that the M31 satellites are twice as extended (in terms of both half-light and tidal radii) as their Milky Way counterparts, these results suggest that the satellite population of the Andromeda system could inhabit halos that are significantly different from those of the Milky Way in terms of their central densities (abridged).Comment: 26 pages, 18 figures, MNRAS submitte
    corecore