890 research outputs found

    Stabilization of a ring dye laser

    Get PDF

    TEM10 homodyne detection as an optimal small displacement and tilt measurements scheme

    Get PDF
    We report an experimental demonstration of optimal measurements of small displacement and tilt of a Gaussian beam - two conjugate variables - involving a homodyne detection with a TEM10 local oscillator. We verify that the standard split detection is only 64% efficient. We also show a displacement measurement beyond the quantum noise limit, using a squeezed vacuum TEM10 mode within the input beam.Comment: 9 pages, 8 figure

    The Use Of The Ucf Driving Simiulator To Test The Contribution Of Larger Size Vehicles (lsvs) In Rear-end Collisions And Red Light Running On Intersections.

    Get PDF
    Driving safety has been an issue of great concern in the United States throughout the years. According to the National Center for Statistics and Analysis (NCSA), in 2003 alone, there were 6,267,000 crashes in the U.S. from which 1,915,000 were injury crashes, including 38,764 fatal crashes and 43,220 human casualties. The U.S. Department of Transportation spends millions of dollars every year on research that aims to improve roadway safety and decrease the number of traffic collisions. In spring 2002, the Center for Advanced Traffic System Simulation (CATSS), at the University of Central Florida, acquired a sophisticated reconfigurable driving simulator. This simulator, which consists of a late model truck cab, or passenger vehicle cab, mounted on a motion base capable of operation with six degrees of freedom, is a great tool for traffic studies. Two applications of the simulator are to study the contribution of Light Truck Vehicles (LTVs) to potential rear-end collisions, the most common type of crashes, which account for about a third of the U.S. traffic crashes, and the involvement of Larger Size Vehicles (LSVs) in red light running. LTVs can obstruct horizontal visibility for the following car driver and has been a major issue, especially at unsignalized intersections. The sudden stop of an LTV, in the shadow of the blindness of the succeeding car driver, may deprive the following vehicle of a sufficient response time, leading to high probability of a rear-end collision. As for LSVs, they can obstruct the vertical visibility of the traffic light for the succeeding car driver on signalized intersection producing a potential red light running for the latter. Two sub-scenarios were developed in the UCF driving simulator for each the vertical and horizontal visibility blockage scenarios. The first sub-scenario is the base sub-scenario for both scenarios, where the simulator car follows a passenger car, and the second sub-scenario is the test sub-scenario, where the simulator car follows an LTV for the horizontal visibility blockage scenario and an LSV for the vertical visibility blockage scenario. A suggested solution for the vertical visibility blockage of the traffic light problem that consisted of adding a traffic signal pole on the right side of the road was also designed in the driving simulator. The results showed that LTVs produce more rear-end collisions at unsignalized intersections due to the horizontal visibility blockage and following car drivers\u27 behavior. The results also showed that LSVs contribute significantly to red light running on signalized intersections and that the addition of a traffic signal pole on the right side of the road reduces the red light running probability

    Offline estimation of decay time for an optical cavity with a low pass filter cavity model

    Get PDF
    This Letter presents offline estimation results for the decay-time constant for an experimental Fabry–Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2x2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity

    Quantum measurements of spatial conjugate variables: Displacement and tilt of a Gaussian beam

    Full text link
    We consider the problem of measurement of optical transverse profile parameters and their conjugate variable. Using multi-mode analysis, we introduce the concept of detection noise-modes. For Gaussian beams, displacement and tilt are a pair of transverse profile conjugate variables. We experimentally demonstrate their optimal encoding and detection with a spatial homodyning scheme. Using higher order spatial mode squeezing, we show the sub-shot noise measurements for the displacement and tilt of a Gaussian beam.Comment: 3 page

    Sensors for Pointing Moving Instruments Toward Each Other

    Get PDF
    Optoelectronic sensor systems are being developed for use in maintaining fixed relative orientations of two scientific-instrument platforms that are in relative motion. In the original intended application, the platforms would be two spacecraft flying in formation and separated by a long baseline. In principle, sensor systems of this type could also be used in terrestrial applications for maintaining alignments between moving instrument platforms. The sensor system would utilize beacon laser beams that would be transmitted by the platforms in the normal course of scientific measurements. The frequency of the returned laser beam would differ by about 5 MHz. On each platform, the transmitted laser beam and the laser beam bounced off the other platform would be focused onto a quadrant photodetector, where the interference between the laser beams would give rise to sinusoidal (beat-frequency) signals on all four quadrants. The differences among the phases of the beat-frequency signals in the quadrants would depend on, and would be used to determine the angle between, the wave fronts of the outgoing and incoming laser beams

    A multi-wavelength study of Supernova Remnants in six nearby galaxies. I: Detection of new X-ray selected Supernova Remnants with Chandra

    Full text link
    We present results from a study of the Supernova Remnant (SNR) population in a sample of six nearby galaxies (NGC 2403, NGC 3077, NGC 4214, NGC 4449, NGC 4395 and NGC 5204) based on Chandra archival data. We have detected 244 discrete X-ray sources down to a limiting flux of 10^{-15} erg/s. We identify 37 X-ray selected thermal SNRs based on their X-ray colors or spectra, 30 of which are new discoveries. In many cases the X-ray classification is confirmed based on counterparts with SNRs identified in other wavelengths. Three of the galaxies in our sample (NGC 4214, NGC 4395 and NGC 5204) are studied for the first time, resulting in the discovery of 13 thermal SNRs. We discuss the properties (luminosity, temperature, density) of the X-ray detected SNRs in the galaxies of our sample in order to address their dependence on their environment. We find that X-ray selected SNRs in irregular galaxies appear to be more luminous than those in spirals. We attribute this to the lower metalicities and therefore more massive progenitor stars of irregular galaxies or the higher local densities of the ISM. We also discuss the X-ray selected SNR populations in the context of the Star Formation Rate of their host galaxies. A comparison of the numbers of observed luminous X-ray selected SNRs with those expected based on the luminosity functions of X-ray SNRs in the MCs and M33 suggest different luminosity distributions between the SNRs in spiral and irregular galaxies with the latter tending to have flatter distributions.Comment: 56 pages, 14 figures, 26 tables. Accepted for publication in Ap

    Hard X-ray observation and multiwavelength study of the PeVatron candidate pulsar wind nebula "Dragonfly"

    Full text link
    We studied the PeVatron nature of the pulsar wind nebula G75.2+0.1 ("Dragonfly") as part of our NuSTAR observational campaign of energetic PWNe. The Dragonfly is spatially coincident with LHAASO J2018+3651 whose maximum photon energy is 0.27 PeV. We detected a compact (radius 1') inner nebula of the Dragonfly without a spectral break in 3 −- 20 keV using NuSTAR. A joint analysis of the inner nebula with the archival Chandra and XMM-Newton observations yields a power-law spectrum with Γ=1.49±0.03\Gamma=1.49\pm0.03. Synchrotron burnoff is observed from the shrinkage of the NuSTAR nebula at higher energies, from which we infer the magnetic field in the inner nebula of 24 ÎŒ\muG at 3.5 kpc. Our analysis of archival XMM data and 13 years of Fermi-LAT data confirms the detection of an extended (~10') outer nebula in 2 −- 6 keV (Γ=1.82±0.03\Gamma=1.82\pm0.03) and non-detection of a GeV nebula, respectively. Using the VLA, XMM, and HAWC data, we modeled a multi-wavelength spectral energy distribution of the Dragonfly as a leptonic PeVatron. The maximum injected particle energy of 1.4 PeV from our model suggests that the Dragonfly is likely a PeVatron. Our model prediction of the low magnetic field (2.7 ÎŒ\muG) in the outer nebula and recent interaction with the host supernova remnant's reverse shock (4 kyrs ago) align with common features of PeVatron PWNe. The origin of its highly asymmetric morphology, pulsar proper motion, PWN-SNR interaction, and source distance will require further investigations in the future including a multi-wavelength study using radio, X-ray, and gamma-ray observations.Comment: 18 pages, 11 figures, ApJ accepte

    Quantum cascade laser-based reflectance spectroscopy: a robust approach for the classification of plastic type

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Michel, A. P. M., Morrison, A. E., Colson, B. C., Pardis, W. A., Moya, X. A., Harb, C. C., & White, H. K. Quantum cascade laser-based reflectance spectroscopy: a robust approach for the classification of plastic type. Optics Express, 28(12), (2020): 17741-17756, doi:10.1364/OE.393231.The identification of plastic type is important for environmental applications ranging from recycling to understanding the fate of plastics in marine, atmospheric, and terrestrial environments. Infrared reflectance spectroscopy is a powerful approach for plastics identification, requiring only optical access to a sample. The use of visible and near-infrared wavelengths for plastics identification are limiting as dark colored plastics absorb at these wavelengths, producing no reflectance spectra. The use of mid-infrared wavelengths instead enables dark plastics to be identified. Here we demonstrate the capability to utilize a pulsed, widely-tunable (5.59 - 7.41 ”m) mid-infrared quantum cascade laser, as the source for reflectance spectroscopy, for the rapid and robust identification of plastics. Through the application of linear discriminant analysis to the resulting spectral data set, we demonstrate that we can correctly classify five plastic types: polyethylene terephthalate (PET), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS), with a 97% accuracy rate.Richard Saltonstall Charitable Foundation; National Academies Keck Futures Initiative (NAKFI DBS13)
    • 

    corecore