
Offline estimation of decay time for
an optical cavity with a

low pass filter cavity model
Abhijit G. Kallapur,* Toby K. Boyson, Ian R. Petersen, and Charles C. Harb
School of Engineering and IT, UNSW@ADFA, Northcott Drive, Canberra, ACT, Australia

*Corresponding author: abhijit.kallapur@gmail.com

Received April 24, 2012; revised June 12, 2012; accepted June 13, 2012;
posted June 13, 2012 (Doc. ID 166563); published July 16, 2012

This Letter presents offline estimation results for the decay-time constant for an experimental Fabry–Perot optical
cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter
(LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light
intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using
the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in pre-
vious work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed
to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2 × 2)
covariance matrix using the LPF model, as opposed to propagating three states and a (3 × 3) covariance matrix using
the quadrature model. This gives the former model a computational advantage over the latter and leads to faster
execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two
filter states is computationally more efficient, converges faster, and is hence a more suitable method than the
three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for
the cavity. © 2012 Optical Society of America
OCIS codes: 300.6360, 050.2230, 200.3050.

The Fabry–Perot optical cavity used in this Letter con-
sists of a stainless steel spacer, separating two highly
reflecting mirrors. Tunable laser light (1550 nm) is
coupled into the cavity, then terminated at regular inter-
vals. The measured output field has a ring-up and ring-
down profile, which is a characteristic of the cavity
parameters and losses between the mirrors, and the
spectroscopic technique is termed cavity ring-down
spectroscopy (CRDS); e.g., see [1–4]. In this Letter, a
continuous-wave (CW) laser source is used and the op-
tical cavity is actively locked to the frequency of the in-
cident light [2]. The time it takes for the light intensity
inside the cavity to decay to 1 ∕ e times its initial intensity
is termed as the decay time and is denoted by τ. This rate
of decay of light intensity inside the cavity depends on
the reflectivity of the mirrors inside the cavity and losses
due to sample(s) contained within the cavity that directly
dictate the amount of absorption. If the absorption due to
the mirrors is measured in advance for a vacuum cavity,
the absorption due to the sample within the cavity can be
computed explicitly. The rate of decay of the light as a
function of wavelength may be used to generate a spec-
trum, and may thus be used for detecting various
molecules and compounds and as a detector for chroma-
tographic systems.
Linear methods such as the conventional linear least

squares and nonlinear least square methods such as
the Levenberg–Marquardt (LM) can be used to estimate
the value for τ. However, the linear methods can be used
to estimate τ only in the case of isolated ring-downs and
are susceptible to instrument offsets and system noise
characteristics [5–8]. Also, the LM method is known to
limit data throughput to below 10 Hz [7–9]. An offline es-
timation scheme for τ is presented in [7,8], where the cav-
ity is modeled in terms of the annihilation and creation
operators reformulated in terms of the amplitude and

phase quadratures. An extended Kalman filter (EKF)
was then applied to the measured intensity data at the
output of the cavity for the estimation of τ. Though this
method provides a good estimate for τ, it requires the in-
put signal to be DC coupled and is applicable only to
locked experiments. In this Letter, we model the cavity
as a low pass filter (LPF), which is computationally less
expensive than the model used in [7,8], can handle both
AC as well as DC coupled inputs, and is applicable to
both CW as well as pulsed inputs. We also compare
the estimation results for this method with the estimation
scheme used in [7,8]. A detailed description of the experi-
mental setup used in this Letter along with an introduc-
tion to the application of modern estimation and control
techniques can be found in [7,8].

Traditional CRDS data processing techniques fit ex-
perimental data to an exponential equation described by

I�t� � I0 exp�−t ∕ τ�; (1)

where I�t� represents the decay intensity at time t, I0 is
the initial light intensity at the output of the cavity, and τ
is the decay time. Many curve fitting techniques apply
Eq. (1) in order to compute the value for τ. However,
most of these techniques are not suitable for real-time
estimation of τ; see, e.g., [5–9]. It was shown in [7,8] that
modern estimation techniques such as the EKF can be
used to estimate τ in real-time. In order to apply the the-
ory of the EKF, the dynamics of the optical cavity is mod-
eled in terms of the annihilation and creation operators
as [7,8,10,11]:
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(2)
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Here, a denotes the annihilation operator for the cavity
mode defined in an appropriate rotating frame, �·�†
represents the operator adjoint operation, and γ � γm �
γc is the total cavity coupling coefficient. γm represents
the cavity coupling coefficient at the mirrors in a vacuum
cavity and γc represents the cavity coupling coefficient
corresponding to the absorbers within the cavity. Also,
Δ is the detuning parameter, āin is the laser input, y is
the measured output corresponding to the output light
intensity, and w and v represent lumped process and
measurement noise terms, respectively.
As shown in [7,8], the cavity dynamics in Eq. (2) can be

reformulated in terms of quadrature variables for ampli-
tude and phase. The resultant equations are written in the
state space form before applying the EKF for estimating
τ. In this Letter, we model the dynamics of the optical
cavity as an LPF. This model is motivated by the fact that,
with respect to intensity modulation on the input light,
the cavity operates like an LPF; e.g., see [12,13]. The cav-
ity LPF model is represented in the form of the transfer
function,

G�s� � γ ∕ �s� γ�; (3)

where γ � 1 ∕ τ is the coupling coefficient. This can be
written in the continuous-time state space form as

_x�t� � −γx�t� � u�t� �w�t�; (4)

y�t� � γx�t� � v�t�; (5)

where x�t� is the state of the system, u�t� is the input
(laser), and y�t� is the output. Also, w�t� and v�t� are
the lumped process and measurement noise terms, re-
spectively, that represent the noise components in the
input signal, from measurement devices, and other noise
sources. Since we are interested in estimating the value
of τ � 1 ∕ γ, we can consider γ to be a state of the system
and augment it with the original state x�t� in Eq. (4). Set-
ting x1�t� � x�t� and x2�t� � γ, the system (4) and (5) can
be written in the nonlinear form
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(6)

y�t� � x1�t�x2�t� � v�t�: (7)

Here, in the absence of noise, _x2 � 0 because γ is a con-
stant. This system is in the general nonlinear form

_x�t� � f c�x�t�; u�t�� � Dcw�t�; (8)

y�t� � h�x�t�� � v�t�: (9)

Since the measurement is obtained in discrete time
steps, we can write the dynamics in the discrete time
form as [7,8]

xk � f �xk; uk� � Ddwk; (10)

yk�1 � h�xk�1� � vk�1: (11)

Also, the discrete time measurement equation is com-
puted as

yk�1 � h�xk�1� � vk�1 � x1k�1
x2k�1

� vk�1: (12)

The discrete time EKF recursion equations are given
by

Propagation

x−k�1 � f �x�k ; uk�; (13)

P−
k�1 � FkP

�
k F

T
k � Qδ: (14)

Update

Kk�1 � P−
k�1H

T
k�1�Hk�1P−

k�1H
T
k�1 � R�−1; (15)

x�k�1 � x−k�1 � Kk�1�yk�1 − h�x−k�1��; (16)

P�
k�1 � I − Kk�1Hk�1P−

k�1: (17)

Here, the propagation step consists of estimating the va-
lue of the state x and error covariance P (a matrix repre-
senting the approximate variance of the estimate of the
state from its true value) one time-step ahead. These va-
lues are computed using available state(s) and input(s) at
the current time-step and evaluating the state dynamics
f �x�k ; uk�. The errors in propagation are then corrected
using the measured sensor value(s) in the update step.
Also, in Eqs. (13)–(17), y�·� is the measured sensor output
and F �·�, H�·� are the linearized process and output
matrices, respectively, computed about the current oper-
ating point as

Fk �
∂f �x; u�

∂x

����
x�x�k

; Hk�1 �
∂h�x�
∂x

����
x�x−k�1

: (18)

Indeed, since f �x; u� and h�x� are smooth differentiable
functions, the linearization in Eq. (18) is well defined. In
addition, K�·� represents the Kalman gain, P is the error
covariance matrix, Q and R are the process and measure-
ment noise covariance matrices, and I is the identity ma-
trix of suitable dimensions. Also, �·�− and �·�� represent a
priori and a posteriori values, respectively, and δ is the
sampling time constant.

The actual estimation process was carried out by ap-
plying the discrete time EKF recursion equations (13)–
(17) to the experimentally obtained light intensity data
at the output of the cavity. Various matrices and con-
stants in Eqs. (13)–(17) were chosen as part of the design
process and were set to be

Q �
�
9.98 × 10−17 0

0 0

�
;R � 10−8;

P0 �
�
9.98 × 10−17 0

0 105

�
; x0 �

�
0

1.9 × 104

�
: (19)

August 1, 2012 / Vol. 37, No. 15 / OPTICS LETTERS 3019



Here, P0 is the initial error covariance matrix and x0
is the initial state vector. In addition, the system in
Eqs. (6) and (7) was linearized with respect to the state
vector �x1�t�; x2�t��T as

∂f �x; u�
∂x

�
�
−x2�t� −x1�t�

0 0

�
; (20)

∂h�x�
∂x

� � x2�t� x1�t� �: (21)

The system in Eq. (20) was discretized using the Euler
scheme described in [7,8] and evaluated at x � x�k . Dur-
ing the estimation process, the initial guess for γ was set
at 10% of its expected true value corresponding to 90%
error in initial condition. The measured light intensity
at the output of the cavity was stored in the vector
y�·� defined in Eq. (12), and the sampling time constant
δ was set to 10−8 s. For a detailed discussion on the de-
finition of matrices Q, P, and R along with their physical
significance, see, e.g., [14].
A detailed description of the experimental setup used

to record light intensity data at the output of the Fabry–
Perot cavity can be found in [7,8]. During the process of
estimation for τ, the laser light coupling to the input of the
cavity was chopped at 25 kHz, and the corresponding
light intensity at the output was recorded and applied
as measurements to the discrete time EKF recursion
equations (13)–(17) using constants outlined in Eq. (19).
The estimation process was carried out using a thousand
run Monte Carlo (MC) procedure, programmed using
Matlab. At each MC run, the EKF was applied to the same
set of measured intensity outputs but with different sets
of randomly generated input noise values. A sample EKF
estimation output for τ using the method described in
this Letter is compared with the EKF estimation results
presented in [7,8].
From Fig. 1, though both methods provide acceptable

estimation results, the EKF estimation for τ, where the
cavity is modeled as in [7,8], takes longer to settle close
to the expected value of ≈5.3 μs. On the other hand, the
EKF estimation for τ using an LPF model for the cavity
dynamics settles close to the expected value faster. In
addition, since the LPF model for the cavity consists
of two states in the augmented state vector, as compared
to three states in the model presented in [7,8], in the filter
(EKF) formulation with the LPF cavity model, only two
states need to be propagated along with a (2 × 2) covar-
iance matrix with each filter recursion. This is computa-
tionally less expensive than propagating three states and
a (3 × 3) covariance matrix as in the case of the quadra-
ture model in [7,8] [see Eqs. (13) and (14)]. This makes
the estimation process using the LPF cavity model more
suitable for real-time implementation. A comparison of
the average execution times for both methods is outlined
in Table 1.
In conclusion, though the τ estimation process pre-

sented in [7,8] and the LPF approach presented in this
Letter provide acceptable results, it is seen that the latter

uses a simpler model for cavity dynamics, has a faster
EKF execution time, settles close to the expected value
for τ within fewer ring-down cycles, and exhibits smaller
overshoot in the beginning of the estimation process than
the former method.
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Fig. 1. (Color online) Comparison of EKF estimation result for
τ: quadrature model in [7,8] versus LPF model for the cavity.

Table 1. Comparison of Average EKF Execution

Times From 1000 MC Runs

Quadrature model LPF model

Total time 1.65 s 1.5 s
One recursion 41.3 μs 37.5 μs
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