92 research outputs found

    統計力學の諸問題

    Get PDF

    Intracellular stability of 2′-OMe-4′-thioribonucleoside modified siRNA leads to long-term RNAi effect

    Get PDF
    Chemically modified siRNAs are expected to have resistance toward nuclease degradation and good thermal stability in duplex formation for in vivo applications. We have recently found that 2′-OMe-4′-thioRNA, a hybrid chemical modification based on 2′-OMeRNA and 4′-thioRNA, has high hybridization affinity for complementary RNA and significant resistance toward degradation in human plasma. These results prompted us to develop chemically modified siRNAs using 2′-OMe-4′-thioribonucleosides for therapeutic application. Effective modification patterns were screened with a luciferase reporter assay. The best modification pattern of siRNA, which conferred duration of the gene-silencing effect without loss of RNAi activity, was identified. Quantification of the remaining siRNA in HeLa-luc cells using a Heat-in-Triton (HIT) qRT–PCR revealed that the intracellular stability of the siRNA modified with 2′-OMe-4′-thioribonucleosides contributed significantly to the duration of its RNAi activity

    A thymus-specific noncoding RNA, Thy-ncR1, is a cytoplasmic riboregulator of MFAP4 mRNA in immature T-cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postgenomic transcriptome analyses have identified large numbers of noncoding (nc)RNAs in mammalian cells. However, the biological function of long ncRNAs in mammalian cells remains largely unknown. Our recent expression profiling of selected human long ncRNAs revealed that a majority were expressed in an organ-specific manner, suggesting their function was linked to specific physiological phenomena in each organ. We investigated the characteristics and function of ncRNAs that were specifically expressed in the thymus, the site of T-cell selection and maturation.</p> <p>Results</p> <p>Expression profiling of 10 thymus-specific ncRNAs in 17 T-cell leukemia cell lines derived from various stages of T-cell maturation revealed that HIT14168 ncRNA, named Thy-ncR1, was specifically expressed in cell lines derived from stage III immature T cells in which the neighbouring CD1 gene cluster is also specifically activated. The Thy-ncR1 precursor exhibited complex alternative splicing patterns and differential usage of the 5' terminus leading to the production of an estimated 24 isoforms, which were predominantly located in the cytoplasm. Selective RNAi knockdown of each Thy-ncR1 isoform demonstrated that microfibril-associated glycoprotein 4 (MFAP4) mRNA was negatively regulated by two major Thy-ncR1 isoforms. Intriguingly, the MFAP4 mRNA level was controlled by a hUPF1-dependent mRNA degradation pathway in the cytoplasm distinct from nonsense-mediated decay.</p> <p>Conclusions</p> <p>This study identified Thy-ncR1 ncRNA to be specifically expressed in stage III immature T cells in which the neighbouring CD1 gene cluster was activated. Complex alternative splicing produces multiple Thy-ncR1 isoforms. Two major Thy-ncR1 isoforms are cytoplasmic riboregulators that suppress the expression of MFAP4 mRNA, which is degraded by an uncharacterized hUPF1-dependent pathway.</p

    New NTP analogs: the synthesis of 4′-thioUTP and 4′-thioCTP and their utility for SELEX

    Get PDF
    The synthesis of the triphosphates of 4′-thiouridine and 4′-thiocytidine, 4′-thioUTP (7; thioUTP) and 4′-thioCTP (8; thioCTP), and their utility for SELEX (systematic evolution of ligands by exponential enrichment) is described. The new nucleoside triphosphate (NTP) analogs 7 and 8 were prepared from appropriately protected 4′-thiouridine and -cytidine derivatives using the one-pot method reported by J. Ludwig and F. Eckstein [(1989) J. Org. Chem., 54, 631–635]. Because SELEX requires both in vitro transcription and reverse transcription, we examined the ability of 7 and 8 for SELEX by focusing on the two steps. Incorporation of 7 and 8 by T7 RNA polymerase to give 4′-thioRNA (thioRNA) proceeded well and was superior to those of the two sets of frequently used modified NTP analogs for SELEX (2′-NH(2)dUTP and 2′-NH(2)dCTP; 2′-FdUTP and 2′-FdCTP), when an adequate leader sequence of DNA template was selected. We revealed that a leader sequence of about +15 of DNA template is important for the effective incorporation of modified NTP analogs by T7 RNA polymerase. In addition, reverse transcription of the resulting thioRNA into the complementary DNA in the presence of 2′-deoxynucleoside triphosphates (dNTPs) also proceeded smoothly and precisely. The stability of the thioRNA toward RNase A was 50 times greater than that of the corresponding natural RNA. With these successful results in hand, we attempted the selection of thioRNA aptamers to human α-thrombin using thioUTP and thioCTP, and found a thioRNA aptamer with high binding affinity (K(d) = 4.7 nM)

    Finite temperature effects on the structural stability of Si-doped HfO2_{2} using first-principles calculations

    Full text link
    The structural stabilities of the monoclinic and tetragonal phases of Si-doped HfO2_{2} at finite temperatures were analyzed using a computational scheme to assess the effects of impurity doping. The finite temperature effects considered in this work represented lattice vibration and impurity configuration effects. The results show that 6% Si doping stabilizes the tetragonal phase at room temperature, although a higher concentration of Si is required to stabilize the tetragonal phase at zero temperature. These data indicate that lattice vibration and impurity configuration effects are important factors determining structural stability at finite temperatures.Comment: 5 pages, 3 figure

    miR-155, a Modulator of FOXO3a Protein Expression, Is Underexpressed and Cannot Be Upregulated by Stimulation of HOZOT, a Line of Multifunctional Treg

    Get PDF
    MicroRNAs (miRNAs) play important roles in regulating post-transcriptional gene repression in a variety of immunological processes. In particular, much attention has been focused on their roles in regulatory T (Treg) cells which are crucial for maintaining peripheral tolerance and controlling T cell responses. Recently, we established a novel type of human Treg cell line, termed HOZOT, multifunctional cells exhibiting a CD4+CD8+ phenotype. In this study, we performed miRNA profiling to identify signature miRNAs of HOZOT, and therein identified miR-155. Although miR-155 has also been characterized as a signature miRNA for FOXP3+ natural Treg (nTreg) cells, it was expressed quite differently in HOZOT cells. Under both stimulatory and non-stimulatory conditions, miR-155 expression remained at low levels in HOZOT, while its expression in nTreg and conventional T cells remarkably increased after stimulation. We next searched candidate target genes of miR-155 through bioinformatics, and identified FOXO3a, a negative regulator of Akt signaling, as a miR-155 target gene. Further studies by gain- and loss-of-function experiments supported a role for miR-155 in the regulation of FOXO3a protein expression in conventional T and HOZOT cells
    corecore