110 research outputs found

    TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice

    Get PDF
    Excess production of reactive oxygen species (ROS) caused by hyperglycemia is a major risk factor for heart failure. We previously reported that transient receptor potential canonical 3 (TRPC3) channel mediates pressure overload-induced maladaptive cardiac fibrosis by forming stably functional complex with NADPH oxidase 2 (Nox2). Although TRPC3 has been long suggested to form hetero-multimer channels with TRPC6 and function as diacylglycerol-activated cation channels coordinately, the role of TRPC6 in heart is still obscure. We here demonstrated that deletion of TRPC6 had no impact on pressure overload-induced heart failure despite inhibiting interstitial fibrosis in mice. TRPC6-deficient mouse hearts 1 week after transverse aortic constriction showed comparable increases in fibrotic gene expressions and ROS production but promoted inductions of inflammatory cytokines, compared to wild type hearts. Treatment of TRPC6-deficient mice with streptozotocin caused severe reduction of cardiac contractility with enhancing urinary and cardiac lipid peroxide levels, compared to wild type and TRPC3-deficient mice. Knockdown of TRPC6, but not TRPC3, enhanced basal expression levels of cytokines in rat cardiomyocytes. TRPC6 could interact with Nox2, but the abundance of TRPC6 was inversely correlated with that of Nox2. These results strongly suggest that Nox2 destabilization through disrupting TRPC3-Nox2 complex underlies attenuation of hyperglycemia-induced heart failure by TRPC6.Fil: Oda, Sayaka. Okazaki Institute for Integrative Bioscience; Japón. SOKENDAI; JapónFil: Numaga Tomita, Takuro. Okazaki Institute for Integrative Bioscience; Japón. SOKENDAI; JapónFil: Kitajima, Naoyuki. Okazaki Institute for Integrative Bioscience; Japón. Kyushu University; JapónFil: Tomizaki, Takashi. Okazaki Institute for Integrative Bioscience; Japón. Kyushu University; Japón. University of Tsukuba; JapónFil: Harada, Eri. Ajinomoto Co.; Japón. EA Pharma Co.; JapónFil: Shimauchi, Tsukasa. Okazaki Institute for Integrative Bioscience; Japón. Kyushu University; JapónFil: Nishimura, Akiyuki. Okazaki Institute for Integrative Bioscience; Japón. SOKENDAI; Japón. Ajinomoto Co.; JapónFil: Ishikawa, Tatsuya. Kyushu University; Japón. Ajinomoto Co.; Japón. EA Pharma Co.; JapónFil: Kumagai, Yoshito. University of Tsukuba; JapónFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Nishida, Motohiro. Okazaki Institute for Integrative Bioscience; Japón. SOKENDAI; Japón. Kyushu University; Japón. PRESTO; Japó

    Free fatty acid receptors, G protein-coupled receptor 120 and G protein-coupled receptor 40, are essential for oil-induced gastric inhibitory polypeptide secretion

    Get PDF
    Aims/Introduction: Incretin hormone glucose‐dependent insulinotropic polypeptide/gastric inhibitory polypeptide (GIP) plays a key role in high‐fat diet‐induced obesity and insulin resistance. GIP is strongly secreted from enteroendocrine K cells by oil ingestion. G protein‐coupled receptor (GPR)120 and GPR40 are two major receptors for long chain fatty acids, and are expressed in enteroendocrine K cells. In the present study, we investigated the effect of the two receptors on oil‐induced GIP secretion using GPR120‐ and GPR40‐double knockout (DKO) mice. Materials and Methods: Global knockout mice of GPR120 and GPR40 were crossbred to generate DKO mice. Oral glucose tolerance test and oral corn oil tolerance test were carried out. For analysis of the number of K cells and gene expression in K cells, DKO mice were crossbred with GIP‐green fluorescent protein knock‐in mice in which visualization and isolation of K cells can be achieved. Results: Double knockout mice showed normal glucose‐induced GIP secretion, but no GIP secretion by oil. We then investigated the number of K cells and gene characteristics in K cells isolated from GIP‐green fluorescent protein knock‐in mice. Deficiency of both receptors did not affect the number of K cells in the small intestine or expression of GIP messenger ribonucleic acid in K cells. Furthermore, there was no significant difference in the expression of the genes associated with lipid absorption or GIP secretion in K cells between wild‐type and DKO mice. Conclusions: Oil‐induced GIP secretion is triggered by the two major fatty acid receptors, GPR120 and GPR40, without changing K‐cell number or K‐cell characteristics

    Life history traits of adults and embryos of the Antarctic midge Belgica antarctica

    Get PDF
    Abstract Although larvae of the Antarctic midge, Belgica antarctica, live for more than 2 years, the adult and embryonic stages are brief and are less well known than the larvae. In this report, we provide additional details of these understudied life stages with laboratory observation on adult emergence, longevity, preoviposition period and embryonic development. Male adults emerged slightly earlier than females, and they also lived longer. More than a half (57 %) of the adults that emerged in the laboratory were males. Females produced only a single egg mass and died within a day after oviposition. Embryonic development required 16 days at 4°C, and prior to hatching, the pharate larvae perform a distinct sequence of behaviors that include drinking and peristaltic movement. We also discuss points that need to be resolved for laboratory propagation of this species

    Selective cytotoxicity of dihydroorotate dehydrogenase inhibitors to human cancer cells under hypoxia and nutrient-deprived conditions

    Get PDF
    Human dihydroorotate dehydrogenase (HsDHODH) is a key enzyme of pyrimidine de novo biosynthesis pathway. It is located on the mitochondrial inner membrane and contributes to the respiratory chain by shuttling electrons to the ubiquinone pool. We have discovered ascofuranone (1), a natural compound produced by Acremonium sclerotigenum, and its derivatives are a potent class of HsDHODH inhibitors. We conducted a structure–activity relationship study and have identified functional groups of 1 that are essential for the inhibition of HsDHODH enzymatic activity. Furthermore, the binding mode of 1 and its derivatives to HsDHODH was demonstrated by co-crystallographic analysis and we show that these inhibitors bind at the ubiquinone binding site. In addition, the cytotoxicities of 1 and its potent derivatives 7, 8, and 9were studied using human cultured cancer cells. Interestingly, they showed selective and strong cytotoxicity to cancer cells cultured under microenvironment (hypoxia and nutrient-deprived) conditions. The selectivity ratio of 8 under this microenvironment show the most potent inhibition which was over 1000-fold higher compared to that under normal culture condition. Our studies suggest that under microenvironment conditions, cancer cells heavily depend on the pyrimidine de novo biosynthesis pathway. We also provide the first evidence that 1 and its derivatives are potential lead candidates for drug development which target the HsDHODH of cancer cells living under a tumor microenvironment

    An analysis of intestinal morphology and incretin-producing cells using tissue optical clearing and 3-D imaging

    Get PDF
    Tissue optical clearing permits detailed evaluation of organ three-dimensional (3-D) structure as well as that of individual cells by tissue staining and autofluorescence. In this study, we evaluated intestinal morphology, intestinal epithelial cells (IECs), and enteroendocrine cells, such as incretin-producing cells, in reporter mice by intestinal 3-D imaging. 3-D intestinal imaging of reporter mice using optical tissue clearing enabled us to evaluate both detailed intestinal morphologies and cell numbers, villus length and crypt depth in the same samples. In disease mouse model of lipopolysaccharide (LPS)-injected mice, the results of 3-D imaging using tissue optical clearing in this study was consistent with those of 2-D imaging in previous reports and could added the new data of intestinal morphology. In analysis of incretin-producing cells of reporter mice, we could elucidate the number, the percentage, and the localization of incretin-producing cells in intestine and the difference of those between L cells and K cells. Thus, we established a novel method of intestinal analysis using tissue optical clearing and 3-D imaging. 3-D evaluation of intestine enabled us to clarify not only detailed intestinal morphology but also the precise number and localization of IECs and incretin-producing cells in the same samples

    Effect of X-Irradiation at Different Stages in the Cell Cycle on Individual Cell?Based Kinetics in an Asynchronous Cell Population

    Get PDF
    Using an asynchronously growing cell population, we investigated how X-irradiation at different stages of the cell cycle influences individual cell-based kinetics. To visualize the cellcycle phase, we employed the fluorescent ubiquitination-based cell cycle indicator (Fucci). After 5 Gy irradiation, HeLa cells no longer entered M phase in an order determined by their previous stage of the cell cycle, primarily because green phase (S and G2) was less prolonged in cells irradiated during the red phase (G1) than in those irradiated during the green phase. Furthermore, prolongation of the green phase in cells irradiated during the red phase gradually increased as the irradiation timing approached late G1 phase. The results revealed that endoreduplication rarely occurs in this cell line under the conditions we studied. We next established a method for classifying the green phase into early S, mid S, late S, and G2 phases at the time of irradiation, and then attempted to estimate the duration of G2 arrest based on certain assumptions. The value was the largest when cells were irradiated in mid or late S phase and the smallest when they were irradiated in G1 phase. In this study, by closely following individual cells irradiated at different cell-cycle phases, we revealed for the first time the unique cell-cycle kinetics in HeLa cells that follow irradiation
    corecore