238 research outputs found
Genome sequencing and annotation of Cellulomonas sp. HZM
We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA)
A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties
Pear (Pyrus communis L.) is widely spread throughout the temperate regions of the world, such as China, America and Australia. This fruit is popular among consumers due to its excellent taste and perceived health benefits. Various bioactive compounds, which contribute to these health benefits, have been detected in the pear fruits, including a range of phenolic compounds. Five Australian grown pear varieties, which include Packham’s Triumph, Josephine de Malines, Beurre Bosc, Winter Nelis and Rico were selected for this study to examine the phenolic compounds in pears. Beurre Bosc exhibited the highest total polyphenol content (TPC) (3.14 ± 0.02 mg GAE/g), total tannin content (TTC) (1.43 ± 0.04 mg CE/g) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) (5.72 ± 0.11 mg AAE/g), while the Josephine de Malines variety was high in total flavonoid content (TFC) (1.53 ± 0.09 mg QE/g), ferric reducing antioxidant power (FRAP) (4.37 ± 0.04 mg AAE/g), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (4.44 ± 0.01 mg AAE/g) and total antioxidant capacity (TAC) (5.29 ± 0.09 mg AAE/g). The liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) data indicate that a total of 73 phenolic compounds were detected in Beurre Bosc (37 compounds), Josephine de Malines (34), Rico (22), Packham’s Triumph (15) and Winter Nelis (9), respectively. From HPLC-PDA quantification, the Beurre Bosc pear variety showed significantly higher in phenolic acids (chlorogenic acid; 17.58 ± 0.88 mg/g) and while flavonoids were significantly higher in Josephine de Malines (catechin; 17.45 ± 1.39 mg/g), as compared to other pear varieties. The analyses suggest that the Australian grown pears might contain an ideal source of phenolic compounds which benefit human health. The information provided by the present work can serve as practical supporting data for the use of pears in the nutraceutical, pharmaceutical and food industries
High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities
Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries
Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential
Dragon fruit is a popular tropical fruit that has a high phenolic content which are the main contributors to the antioxidant potential and health benefits of dragon fruit pulp and peel waste. Although some phenolic compounds in dragon fruit have previously been reported, a comprehensive analysis of complete phenolic profile of the Australian varieties has not been conducted. Thus, the aim of this study was to extract, identify and quantify phenolics from dragon fruits grown in Australia. Phenolic compounds were extracted from the peels and pulps of white and red dragon fruit. Phenolic content was determined by total phenolic content (TPC), total flavonoid content (TFC) and total tannin content (TTC), while antioxidant activities were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and total antioxidant capacity (TAC). The results showed that dragon fruit pulp had a higher total phenolic content and stronger antioxidant capacity than peel, while the peel had a higher content of flavonoids and tannins than the pulp. Liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) was used for the characterization of phenolic compounds, a total of 80 phenolics including phenolic acids (25), flavonoids (38), lignans (6), stilbene (3) and other polyphenols (8) were characterized in all dragon fruits. High performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) quantified the phenolic compounds in different portion of dragon fruit and showed that dragon peel had higher concentrations of phenolics than pulp. The results highlighted that both dragon fruit peel and pulp are potential sources of phenolic compounds, with peel in particular being a source of antioxidant phenolics with potential as ingredients for the food and pharmaceutical industries
Fair Near Neighbor Search: Independent Range Sampling in High Dimensions. PODS
Similarity search is a fundamental algorithmic primitive, widely used in many
computer science disciplines. There are several variants of the similarity
search problem, and one of the most relevant is the -near neighbor (-NN)
problem: given a radius and a set of points , construct a data
structure that, for any given query point , returns a point within
distance at most from . In this paper, we study the -NN problem in
the light of fairness. We consider fairness in the sense of equal opportunity:
all points that are within distance from the query should have the same
probability to be returned. In the low-dimensional case, this problem was first
studied by Hu, Qiao, and Tao (PODS 2014). Locality sensitive hashing (LSH), the
theoretically strongest approach to similarity search in high dimensions, does
not provide such a fairness guarantee. To address this, we propose efficient
data structures for -NN where all points in that are near have the
same probability to be selected and returned by the query. Specifically, we
first propose a black-box approach that, given any LSH scheme, constructs a
data structure for uniformly sampling points in the neighborhood of a query.
Then, we develop a data structure for fair similarity search under inner
product that requires nearly-linear space and exploits locality sensitive
filters. The paper concludes with an experimental evaluation that highlights
(un)fairness in a recommendation setting on real-world datasets and discusses
the inherent unfairness introduced by solving other variants of the problem.Comment: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), Pages 191-204, June 202
Antioxidative Properties and Phenolic Profile of the Core, Pulp and Peel of Commercialized Kiwifruit by LC-ESI-QTOF-MS/MS
The kiwifruit is cultivated globally due to its diversity of phytochemicals, especially phenolic compounds, which have antioxidant, anti-inflammatory and anti-cancer medical effects. However, only the pulp of the kiwifruit is consumed, while the peels and cores—which are also rich in phytochemicals—are usually wasted. Meanwhile, detailed information on the comparison among the three parts is still limited. In this study, the antioxidant potentials in the core, pulp, and peel of the three most commercialized kiwifruit cultivars (Australian-grown Hayward kiwifruit, New Zealand-grown Zesy002 kiwifruit, and New Zealand-grown organic Hayward kiwifruit) were selected. Their antioxidant capacities were tested, and their phenolic profiles were identified and characterized by liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). The antioxidant results showed that the peel of New Zealand-grown organic Hayward kiwifruit contained the highest total phenolic content (9.65 mg gallic acid equivalent (GAE) mg/g) and total antioxidant capacity (4.43 mg ascorbic acid equivalent (AAE) mg/g), respectively. In addition, the antioxidant capacity of the peel is generally higher than that of the pulp and cores in all species, especially ABTS (2,2-Azino-bis-3ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging ability), ranging from 13.25 mg AAE/g to 18.31 mg AAE/g. The LC-ESI-QTOF-MS/MS tentatively identified the phenolic compounds present in the three kiwifruit species, including 118 unique compounds in kiwifruit peel, 12 unique compounds in the kiwifruit cores, and three unique compounds in kiwifruit pulp. The comprehensive characterization of the phenolics in the kiwifruits’ parts indicates the importance of their waste part as a promising source of phenolics with antioxidant properties. Therefore, this study can guide the industry with meaningful information on kiwifruit waste, and can provide it with the utilization of food and pharmacological aspects
THE INFLUENCE OF MANDIRI SHARIA BANK SAVINGS PROMOTION ON INTEREST SAVING PEOPLE OF PALEMBANG CITY
The aim of this study to find out how much interests in saving people in the city of Palembang, especially saving in a Sharia-based regional bank, namely the Mandiri Sharia Banking. This research was conducted for two months, this study used primary data by distributing questionnaires, location of the study was in the city of Palembang and data analysis in this study by using multiple linear regressions. The results of this study were advertisements have an effect on peoples’ saving interest on Mandiri Sharia Banking Palembang
Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds
The rapid growth of the global population and changes in lifestyle have led to a significant increase in food waste from various industrial, agricultural, and household sources. Nearly one-third of the food produced annually is wasted, resulting in severe resource depletion. Food waste contains rich organic matter, which, if not managed properly, can pose a serious threat to the environment and human health, making the proper disposal of food waste an urgent global issue. However, various types of food waste, such as waste from fruit, vegetables, grains, and other food production and processing, contain important bioactive compounds, such as polyphenols, dietary fiber, proteins, lipids, vitamins, organic acids, and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market. These bioactive compounds offer the potential to convert food waste into value-added products, and fields including nutritional foods, bioplastics, bioenergy, biosurfactants, biofertilizers, and single cell proteins have welcomed food waste as a novel source. This review reveals the latest insights into the various sources of food waste and the potential of utilizing bioactive compounds to convert it into value-added products, thus enhancing people’s confidence in better utilizing and managing food waste
Targeting androgen receptor signaling with MicroRNAs and Curcumin: a promising therapeutic approach for Prostate Cancer Prevention and intervention
Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC
Characterization of Phenolics in Rejected Kiwifruit and Their Antioxidant Potential
Kiwifruit hold significant nutritional value and are a good source of antioxidants due to their diverse range of bioactive compounds. Kiwifruit waste is generated throughout the food supply chain, particularly during transportation and storage. Kiwifruit rejected from the retail market due to unfavorable appearance still possess potential economic value as kiwifruit are abundant in phenolic compounds. The present work studied the phenolic profile and antioxidant potential of rejected kiwifruit, including SunGold (Actinidia chinensis), Hayward (Actinidia deliciosa), and round organic Hayward (Actinidia deliciosa). Regarding phenolics estimation, SunGold possessed the highest TPC (0.72 ± 0.01 mg GAE/g), while Hayward exhibited the highest TFC (0.05 ± 0.09 mg QE/g). In antioxidant assays, SunGold showed the highest antioxidant activities in DPPH (0.31 ± 0.35 mg AAE/g), FRAP (0.48 ± 0.04 mg AAE/g), ABTS (0.69 ± 0.07 mg AAE/g), •OH-RSA (0.07 ± 0.03 mg AAE/g) assays, and FICA (0.19 ± 0.07 mg EDTA/g), whereas Hayward showed the highest RPA (0.09 ± 0.02 mg AAE/g) and TAC (0.57 ± 0.04 mg AAE/g). Separation and characterization of phenolics were conducted using LC-ESI-QTOF-MS/MS. A total of 97 phenolics were tentatively characterized from rejected SunGold (71 phenolics), Hayward (55 phenolics), and round organic Hayward (9 phenolics). Hydroxycinnamic acids and flavonols were the most common phenolics characterized in the three samples. The quantitative analysis was conducted by HPLC-PDA and found that chlorogenic acid (23.98 ± 0.95 mg/g), catechin (23.24 ± 1.16 mg/g), and quercetin (24.59 ± 1.23 mg/g) were the most abundant phenolics present in the rejected kiwifruit samples. The notable presence of phenolic compounds and their corresponding antioxidant capacities indicate the potential value of rescuing rejected kiwifruit for further utilization and commercial exploitation
- …