227 research outputs found
Elliptic and Triangular flow in asymmetric heavy-ion collisions
We present a study of the elliptic (v2) and triangular (v3) flow and their
corresponding eccentricity fluctuations for asymmetric (Au+Ag, Au+Cu and Au+Si)
collisions at \sqrt_NN = 200 GeV. These are compared to the corresponding
results from symmetric (Au+Au and Cu+Cu) collisions at the same energy. The
study which is carried out using a multi-phase transport (AMPT) model shows
that triangularity (\epsilon_3), fluctuations in triangularity and v3 do not
show much variation for the different colliding ion sizes studied. However the
eccentricity (\epsilon_2), fluctuations in eccentricity and v2 shows a strong
dependence on colliding ion size for a given number of participating nucleons.
Our study thus indicates that asymmetric heavy-ion collisions could be used to
constrain models dealing with flow fluctuations in heavy-ion collisions.Comment: 5 Pages, 12 Figures. Accepted for publication in Physical Review
An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks
In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes
Introduction to Medical Imaging Informatics
Medical imaging informatics is a rapidly growing field that combines the
principles of medical imaging and informatics to improve the acquisition,
management, and interpretation of medical images. This chapter introduces the
basic concepts of medical imaging informatics, including image processing,
feature engineering, and machine learning. It also discusses the recent
advancements in computer vision and deep learning technologies and how they are
used to develop new quantitative image markers and prediction models for
disease detection, diagnosis, and prognosis prediction. By covering the basic
knowledge of medical imaging informatics, this chapter provides a foundation
for understanding the role of informatics in medicine and its potential impact
on patient care.Comment: 17 pages, 11 figures, 2 tables; Acceptance of the chapter for the
Springer book "Data-driven approaches to medical imaging
Resolution of coronavirus disease 2019 (COVID-19)
YesIntroduction.
Coronavirus disease 2019 (COVID-19) was first detected in China in December, 2019, and declared as a pandemic by the World Health Organization (WHO) on March 11, 2020. The current management of COVID-19 is based generally on supportive therapy and treatment to prevent respiratory failure. The effective option of antiviral therapy and vaccination are currently under evaluation and development.
Areas covered.
A literature search was performed using PubMed between December 1, 2019–June 23, 2020. This review highlights the current state of knowledge on the viral replication and pathogenicity, diagnostic and therapeutic strategies, and management of COVID-19. This review will be of interest to scientists and clinicians and make a significant contribution toward development of vaccines and targeted therapies to contain the pandemic.
Expert Opinion.
The exit strategy for a path back to normal life is required, which should involve a multi-prong effort toward development of new treatment and a successful vaccine to protect public health worldwide and prevent future COVID-19 outbreaks. Therefore, the bench to bedside translational research as well as reverse translational works focusing bedside to bench is very important and would provide the foundation for the development of targeted drugs and vaccines for COVID-19 infections.Research carried out at TN laboratories are funded by the GrowMedtech, The Royal Society and University of Bradford. KH is supported by a project grant by the GrowMedtech awarded to TN. CW is funded by a Ph.D studentship
Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and meson in Au+Au collisions at = 200 GeV
We present high precision measurements of elliptic flow near midrapidity
() for multi-strange hadrons and meson as a function of
centrality and transverse momentum in Au+Au collisions at center of mass energy
200 GeV. We observe that the transverse momentum dependence of
and is similar to that of and , respectively,
which may indicate that the heavier strange quark flows as strongly as the
lighter up and down quarks. This observation constitutes a clear piece of
evidence for the development of partonic collectivity in heavy-ion collisions
at the top RHIC energy. Number of constituent quark scaling is found to hold
within statistical uncertainty for both 0-30 and 30-80 collision
centrality. There is an indication of the breakdown of previously observed mass
ordering between and proton at low transverse momentum in the
0-30 centrality range, possibly indicating late hadronic interactions
affecting the proton .Comment: 7 pages and 4 figures, Accepted for publication in Physical Review
Letter
Observation of Transverse Spin-Dependent Azimuthal Correlations of Charged Pion Pairs in at GeV
We report the observation of transverse polarization-dependent azimuthal
correlations in charged pion pair production with the STAR experiment in
collisions at RHIC. These correlations directly probe quark
transversity distributions. We measure signals in excess of five standard
deviations at high transverse momenta, at high pseudorapidities eta>0.5, and
for pair masses around the mass of the rho-meson. This is the first direct
transversity measurement in p+p collisions. Comparing the results to data from
lepton-nucleon scattering will test the universality of these spin-dependent
quantities.Comment: 11 pages, 5 figures, 15 tables. Submitted to PR
Energy dependence of acceptance-corrected dielectron excess mass spectrum at mid-rapidity in Au+Au collisions at and 200 GeV
The acceptance-corrected dielectron excess mass spectra, where the known
hadronic sources have been subtracted from the inclusive dielectron mass
spectra, are reported for the first time at mid-rapidity in
minimum-bias Au+Au collisions at = 19.6 and 200 GeV. The excess
mass spectra are consistently described by a model calculation with a broadened
spectral function for GeV/. The integrated
dielectron excess yield at = 19.6 GeV for
GeV/, normalized to the charged particle multiplicity at mid-rapidity, has
a value similar to that in In+In collisions at = 17.3 GeV. For
= 200 GeV, the normalized excess yield in central collisions is
higher than that at = 17.3 GeV and increases from peripheral to
central collisions. These measurements indicate that the lifetime of the hot,
dense medium created in central Au+Au collisions at = 200 GeV
is longer than those in peripheral collisions and at lower energies.Comment: 9 pages, 6 figure
Isolation of Flow and Nonflow Correlations by Two- and Four-Particle Cumulant Measurements of Azimuthal Harmonics in 200 GeV Au+Au Collisions
A data-driven method was applied to measurements of Au+Au collisions at
200 GeV made with the STAR detector at RHIC to isolate
pseudorapidity distance -dependent and -independent
correlations by using two- and four-particle azimuthal cumulant measurements.
We identified a component of the correlation that is -independent,
which is likely dominated by anisotropic flow and flow fluctuations. It was
also found to be independent of within the measured range of
pseudorapidity . The relative flow fluctuation was found to be for particles of transverse momentum
less than GeV/. The -dependent part may be attributed to
nonflow correlations, and is found to be relative to the
flow of the measured second harmonic cumulant at
- …