33 research outputs found

    Measuring biomarkers in wastewater as a new source of epidemiological information:Current state and future perspectives

    Get PDF
    The information obtained from the chemical analysis of specific human excretion products (biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the population under investigation to a defined substance. A proper biomarker can provide relevant information about lifestyle habits, health and wellbeing, but its selection is not an easy task as it should fulfil several specific requirements in order to be successfully employed. This paper aims to summarize the current knowledge related to the most relevant biomarkers used so far. In addition, some potential wastewater biomarkers that could be used for future applications were evaluated. For this purpose, representative chemical classes have been chosen and grouped in four main categories: (i) those that provide estimates of lifestyle factors and substance use, (ii) those used to estimate the exposure to toxicants present in the environment and food, (iii) those that have the potential to provide information about public health and illness and (iv) those used to estimate the population size. To facilitate the evaluation of the eligibility of a compound as a biomarker, information, when available, on stability in urine and wastewater and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed.</p

    Measuring biomarkers in wastewater as a new source of epidemiological information:Current state and future perspectives

    Get PDF
    The information obtained from the chemical analysis of specific human excretion products (biomarkers) in urban wastewater can be used to estimate the exposure or consumption of the population under investigation to a defined substance. A proper biomarker can provide relevant information about lifestyle habits, health and wellbeing, but its selection is not an easy task as it should fulfil several specific requirements in order to be successfully employed. This paper aims to summarize the current knowledge related to the most relevant biomarkers used so far. In addition, some potential wastewater biomarkers that could be used for future applications were evaluated. For this purpose, representative chemical classes have been chosen and grouped in four main categories: (i) those that provide estimates of lifestyle factors and substance use, (ii) those used to estimate the exposure to toxicants present in the environment and food, (iii) those that have the potential to provide information about public health and illness and (iv) those used to estimate the population size. To facilitate the evaluation of the eligibility of a compound as a biomarker, information, when available, on stability in urine and wastewater and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed.This work was supported by the COST Action ES1307 “SCORE – Sewage biomarker analysis for community health assessment”. Emma Gracia-Lor is very grateful to Generalitat Valenciana, Conselleria d'Educació, Investigació, Cultura i Esport (APOSTD/2015, Programa VALi + d) for her post-doctoral contract. Lubertus Bijlsma acknowledges NPS-Euronet (HOME/2014/JDRUG/AG/DRUG/7086), co-funded by the European Union, for his post-doctoral fellowship. Erika Castrignanò, Richard Bade, Juliet Kinyua, Pedram Ramin, Nikolaos I. Rousis, Yeonsuk Ryu would like to thank the SEWPROF MC ITN project, ‘A new paradigm in drug use and human health risk assessment: Sewage profiling at the community level’ [grant agreement 317205] supported by the European Union's Seventh Framework Programme for research, technological development and demonstration for the financial support. Iria González-Mariño extends her gratitude to the Galician Council of Culture, Education and Universities for her postdoctoral contract (Plan Galego de Investigación, Innovación e Crecemento 2011–2015). Foon Yin Lai acknowledges her postdoctoral fellowship from the University of Antwerp. Luigi Lopardo, Axel Rydevik and Barbara Kasprzyk-Hordern would like to acknowledge Leverhulme Trust for funding ‘TOX-EDC, Wastewater profiling for community-wide human exposure assessment from environmental endocrine disrupting chemicals in personal care and consumer products’ (Project No: RPG-2013-297). Frederic Been would like to thank the Swiss National Science Foundation (SNF, P2LAP2_164892) for his post-doctoral grant. This publication reflects the views only of the authors, and the European Commission cannot be held responsible for any use which may be made of the information contained therein

    Preparation and Characterization of a Cerium(IV)-incorporated Manganese Oxide OMS-2. Effect of Cerium(IV) Template on Octahedral Molecular Sieves of Manganese Oxide and Characterization of Manganese Oxide Molecular Sieves with Cerium(IV) as Dopant

    No full text
    The manganese oxide material K-OMS-2 was synthesized both via a redox reaction between potassium permanganate and manganese nitrate in an acidic medium (nitric acid) under reflux conditions and by the sol–gel reaction between KMnO 4 and maleic acid employed in a 3:1 molar ratio. Cerium(IV) was then added by an ion-exchange method. The structures, morphologies, chemical compositions and thermal stabilities of the resulting materials were studied by X-ray diffraction (XRD), N 2 adsorption/desorption, scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and TGA techniques. Both the morphologies and the surface properties of the materials synthesized by these two methods were different. Thus, the material prepared via the sol–gel process possessed a higher surface area and exhibited both a different type of adsorption isotherm and smaller crystallite sizes than the material synthesized by redox reaction under reflux conditions. The physical and chemical properties of the Ce–K-OMS-2 materials were similar to those of pure cryptomelane. TGA and XRD studies showed that the K-OMS-2 and Ce–K-OMS-2 materials exhibited a greater thermal stability in O 2 rather than N 2 atmospheres. In fact, the Ce(IV) derivatives were more stable thermally than the pure material. For Ce–K-OMS-2 R , the data obtained showed that part of the manganese in the framework was substituted by Ce(IV) ions. In contrast, the data for Ce–K-OMS-2 S indicated that not only did Ce(IV) ions substitute part of the manganese in the framework but that Ce(IV) ions also replaced the K + ions in the tunnel structure of the material

    Biodegradation potential of ofloxacin and its resulting transformation products during photolytic and photocatalytic treatment

    No full text
    The release of pharmaceuticals in the environment, as parent compounds, metabolites and transformation products, and the consequent risks posed to living organisms due to the unintended exposure of the latter to these chemicals are nowadays of increasing scientific concern. The development of advanced oxidation processes able to degrade these substances is in the core of the current research objectives, the main target being the removal of these compounds from wastewaters. Often the focus is on the removal of the parent compound only. However, these processes can form transformation products. Knowledge on the risk related to such transformation products is scarce. Among others, knowledge on their toxic effects and their biodegradability is of importance not only when they are present in the environment but also for the assessment of the advanced oxidation processes' efficiency applied for their degradation. Photolytic (UV irradiation) and photocatalytic treatment (UV irradiation in the presence of TiO(2)) of the fluoroquinolone ofloxacin were applied, and the biodegradability of the formed products was investigated using the Closed Bottle test (OECD 301 D). Various transformation products, formed both during the photo(cata)lytic treatment and the Closed Bottle test, were identified using chromatographic analysis with an ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) system. The transformation products formed during the phototreatments were found to be non-readily biodegradable as the biodegradation percentages were close to zero. The persistence of the various photo(cata)lytic transformation products during the Closed Bottle test may be attributed to the fluorine present in all the transformation products formed. The transformation products identified suggest that two transformation routes were present: decarboxylation and opening of the piperazinyl ring. Interestingly, it was observed that in the presence of a readily biodegradable carbon source (sodium acetate), the biodegradation percentage increased drastically for some of the photolytically treated samples. This was not the case for the photocatalytically treated samples, in which also mineralization of the parent compound was achieved faster. Further research is needed, however, in order to increase the understanding of the conditions that may lead to less potent and persistent substances during the application of such engineered or natural processes

    Diclofenac biodegradation by newly isolated Klebsiella sp. KSC: Microbial intermediates and ecotoxicological assessment

    No full text
    The presence of diclofenac, a frequently used analgesic drug in the environment, can be harmful to a variety of organisms like algae, crustaceans and fish. In this study, a bacterial strain of Klebsiella sp. KSC (Gen Bank, accession number KX500307) able to biodegrade high concentration of diclofenac was isolated from livestock soil and identified. The exposure of Klebsiella sp. KSC to 70 mg/L of diclofenac resulted in diclofenac mineralization after 72 h. This is the first study that points out substantial biodegradation of high concentration of diclofenac (70 mg/L) in less than 72 h; and this shows the potential of this strain to be bioaugmented in contaminated sites or to bioreactors. The chemical structure of twelve biotransformation products of diclofenac are proposed. Its transformation pathway may involve hydroxylation, dehydroxylation, decarboxylation and dechlorination of the central ring of diclofenac. Acute ecotoxicity assay with Vibrio fischeri test showed that the main biotransformation product (TP298) of diclofenac by Klebsiella sp. KSC was less toxic than the parent compound

    Metabolites and Transformation Products of Pharmaceuticals in the Aquatic Environment as Contaminants of Emerging Concern

    No full text
    Most pharmaceutical compounds undergo a structural change in the bodies of humans and animals before excretion, resulting in metabolites. After their excretion and introduction into the environment, both parent compounds and metabolites can undergo structural changes by a variety of biotic and abiotic processes. Structural transformations may also be a result of technological processes, such as effluent treatment by photolysis and advanced oxidation, which result in new chemical entities with new properties. The objective of this chapter is to present the insight and new knowledge recently obtained by studies on the fate and effects of pharmaceuticals' metabolites and their transformation products in the aquatic environment. Emphasis is on bio- and photo-transformation products formed in the presence of such compounds in the sewage treatment plants and the aquatic environment while the challenges related to their ecological risk are also discussed

    Solar/TiO2 photocatalytic decomposition of β-blockers atenolol and propranolol in water and wastewater

    No full text
    The photocatalytic conversion of two β-blockers, namely atenolol and propranolol in aqueous TiO2 suspensions was investigated. Irradiation was provided by a solar simulator equipped with 1kW Xe-OP lamp, while emphasis was given on the effect of catalyst type and loading (50-3000mg/L), substrate concentration (5-30mg/L), initial solution pH (3-10), and the addition of H2O2 (0.07-1.4mM) and oxygen on degradation in two matrices (i.e. pure water and treated municipal effluent). Of the various catalysts tested, Degussa P25 was highly active yielding up to about 80% conversion after 120min of reaction. In general, conversion was favored at lower substrate concentrations, near-neutral pH values and in the absence of other organics (i.e. in pure water), while the addition of H2O2 did not accelerate kinetics which seem to follow the Langmuir-Hinshelwood model. Toxicity to D. magna was evaluated prior to and after photocatalytic treatment. Toxicity increased during the early stages of the reaction and then progressively decreased upon the elimination of the substrate and its reaction intermediates, with propranolol being more toxic than atenolol

    DEGRADATION OF 4-TERT-BUTYLPHENOL IN WATER USING MONO-DOPED (M1: MO, W) AND CO-DOPED (M2-M1: CU, CO, ZN) TITANIA CATALYSTS

    No full text
    Mono-doped (Mo-TiO2 and W-TiO2) and co-doped TiO2 (Co-Mo-TiO2, Co-W-TiO2, Cu-Mo- TiO2, Cu-W-TiO2, Zn-Mo-TiO2, and Zn-W-TiO2) catalysts were synthesized by simple impregnation methods and tested for the photocatalytic degradation of 4-tert-butylphenol in water under UV (365 nm) light irradiation. The catalysts were characterized with various analytical methods. X-ray diffraction (XRD), Raman, Diffuse reflectance (DR) spectroscopies, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) were applied to investigate the structure, optical properties, morphology, and elemental composition of the prepared catalysts. The XRD patterns revealed the presence of peaks corresponding to the WO3 in W-TiO2, Co-W-TiO2, Cu-W-TiO2, and Zn-W-TiO2. The co-doping of Cu and Mo to the TiO2 lattice was evidenced by the shift of XRD planes towards higher 2 values, confirming the lattice distortion. Elemental mapping images confirmed the successful impregnation and uniform distribution of metal particles on the TiO2 surface. Compared to undoped TiO2, Mo-TiO2 andW-TiO2 exhibited a lower energy gap. Further incorporation of Mo–TiO2 with Co or Cu introduced slight changes in energy gap and light absorption characteristics, particularly visible light absorption. In addition, photoluminescence (PL) showed that Cu-Mo–TiO2 has a weaker PL intensity than undoped TiO2. Thus, Cu-Mo-TiO2 showed better catalytic activity than pure TiO2, achieving complete degradation of 4-tert-butylphenol under UV light irradiation after 60 min. The application of Cu-Mo-TiO2 under solar light conditions was also tested, and 70% of 4-tert-butylphenol degradation was achieved within 150 min

    Chronic ecotoxic effects to Pseudomonas putida and Vibrio fischeri, and cytostatic and genotoxic effects to the hepatoma cell line (HepG2) of ofloxacin photo(cata)lytically treated solutions

    No full text
    Ofloxacin (OFL), a broad-spectrum and widespread-used photolabile fluoroquinolone, is frequently found in treated wastewaters, aquatic and terrestrial ecosystems leading to increasing concern during the past decades regarding its effects to the environment and human health. The elimination of OFL and other xenobiotics by the application of advanced oxidation processes using photolytic (PL) and photocatalytic (PC) treatments seems promising. However, an integrated assessment scheme is needed, in which, not only the removal of the parent compound, but also the effects of the photo-transformation products (PTPs) are investigated. For this purpose, in the present study, a chronic ecotoxic assessment using representative bacteria of marine and terrestrial ecosystems and a cytostatic and genotoxic evaluation using hepatoma cell line were performed. PL and PC treatments of OFL were applied using UV radiation. The photo-transformation of OFL during the treatments was monitored by DOC measurements and UPLC-MS/MS analysis. The chronic ecotoxicity of OFL and treated samples was evaluated using Pseudomonas putida and Vibrio fischeri; whereas the cytostasis and genotoxicity were estimated by the cytokinesis-block micronucleus assay (CBMN). The main results suggest that photo-transformation of OFL took place during these treatments since the concentration of OFL decreased when the irradiation time increased, as quantified by UPLC-MS/MS analysis, and this was not coupled with an analogous DOC removal. Furthermore, nine compounds were identified as probable PTPs formed through piperazinyl dealkylation and decarboxylation. The ecotoxicity of treated solutions to the bacteria studied decreased while the cytostasis to the hepatoma cell line remained at low levels during both treatments. However, the genotoxicity to the hepatoma cell line demonstrated a different pattern in which treated samples induced a greater number of MNi for the 4-16 min of irradiation (p<0.05) during both treatments. After 64 min of irradiation, the effects decreased to non genotoxic levels (p<0.05). These findings suggest that UV radiation for various treatment processes (catalytic or not), such as disinfection, may create genotoxic by-products. Therefore, in relevant technical applications, the residence time during treatment should receive special attention
    corecore