25 research outputs found

    The Accounting Methods of the Local Government Department Output by Factor Analysis

    Get PDF
    In this paper, using the 2011 national economic accounting data of the provinces, we evaluated the government department performance by factor analysis. And then calculated the local government department's total output taking advantage of the labor production efficiency. And the labor production efficiency of government department concludes the performance information. Which will improved the method of accounting government department's output by cost

    Distinguishing and controlling Mottness in 1T-TaS2_2 by ultrafast light

    Full text link
    Distinguishing and controlling the extent of Mottness is important for materials where the energy scales of the onsite Coulomb repulsion U and the bandwidth W are comparable. Here we report the ultrafast electronic dynamics of 1T-TaS2_2 by ultrafast time- and angle-resolved photoemission spectroscopy. A comparison of the electron dynamics for the newly-discovered intermediate phase (I-phase) as well as the low-temperature commensurate charge density wave (C-CDW) phase shows distinctive dynamics. While the I-phase is characterized by an instantaneous response and nearly time-resolution-limited fast relaxation (~200 fs), the C-CDW phase shows a delayed response and a slower relaxation (a few ps). Such distinctive dynamics refect the different relaxation mechanisms and provide nonequilibrium signatures to distinguish the Mott insulating I-phase from the C-CDW band insulating phase. Moreover, a light-induced bandwidth reduction is observed in the C-CDW phase, pushing it toward the Mott insulating phase. Our work demonstrates the power of ultrafast light-matter interaction in both distinguishing and controlling the extent of Mottness on the ultrafast timescale

    Floquet engineering of black phosphorus upon below-gap pumping

    Full text link
    Time-periodic light field can dress the electronic states and lead to light-induced emergent properties in quantum materials. While below-gap pumping is regarded favorable for Floquet engineering, so far direct experimental evidence of momentum-resolved band renormalization still remains missing. Here, we report experimental evidence of light-induced band renormalization in black phosphorus by pumping at photon energy of 160 meV which is far below the band gap, and the distinction between below-gap pumping and near-resonance pumping is revealed. Our work demonstrates light-induced band engineering upon below-gap pumping, and provides insights for extending Floquet engineering to more quantum materials

    Experimental study on the fine-scale characteristics of a geogrid-gravelly soil reinforcement influence zone

    Get PDF
    Based on a specially designed visualization pullout system and digital photographic measurement technology, geogrid pullout tests were conducted by varying the top load, geogrid type, coarse grain content, and particle shape. The evolution and distribution of the reinforcement influence zone and the soil particle displacement field were analyzed, and the effects of various factors on the formation speed of the reinforcement influence zone, gradient layer thickness, and fine-scale particle displacement characteristics were discussed. The study shows that the reinforcement influence zone’s basic form and particle displacement direction do not change with pullout displacement after it is fully developed. The displacement layers in the influence zone are centered at the reinforced soil interface and are distributed in a diffusion gradient. The thickness of each gradient layer in the upper influence zone is greater than that in the lower influence zone. The greater the normal load is, the smaller the particle displacement and thickness of each gradient layer, and the slower the formation of the reinforcement influence zone. Using high-strength geogrids and geogrids with nodes can increase the upper interface thickness and improve the reinforcement influence zone’s formation speed. Horizontal ribs play a major role in forming the reinforcement influence zone, while longitudinal ribs mainly affect the formation speed. The indirect reinforcement effect of the geogrid on angular gravel soil is better than that on pebble soil. As the coarse grain content in the fill increases from 20% to 30%, the reinforcement influence zone forms faster, and the particle displacement of each gradient layer is smaller. When the coarse grain content increases from 30% to 35%, there is no significant change in the forming rate of the reinforcement influence zone

    Revealing the two-dimensional electronic structure and anisotropic superconductivity in a natural van der Waals superlattice (PbSe)1.14_{1.14}NbSe2_2

    Full text link
    Van der Waals superlattices are important for tailoring the electronic structures and properties of layered materials. Here we report the superconducting properties and electronic structure of a natural van der Waals superlattice (PbSe)1.14_{1.14}NbSe2_2. Anisotropic superconductivity with a transition temperature TcT_c = 5.6 ±\pm 0.1 K, which is higher than monolayer NbSe2_2, is revealed by transport measurements on high-quality samples. Angle-resolved photoemission spectroscopy (ARPES) measurements reveal the two-dimensional electronic structure and a charge transfer of 0.43 electrons per NbSe2_2 unit cell from the blocking PbSe layer. In addition, polarization-dependent ARPES measurements reveal a significant circular dichroism with opposite contrast at K and K' valleys, suggesting a significant spin-orbital coupling and distinct orbital angular momentum. Our work suggests natural van der Waals superlattice as an effective pathway for achieving intriguing properties distinct from both the bulk and monolayer samples.Comment: 8 pages, 4 figure

    Metabolism and Pharmacokinetics of Novel Selective Vascular Endothelial Growth Factor Receptor-2 Inhibitor Apatinib in Humans

    Get PDF
    ABSTRACT Apatinib is a new oral antiangiogenic molecule that inhibits vascular endothelial growth factor receptor-2. The present study aimed to determine the metabolism, pharmacokinetics, and excretion of apatinib in humans and to identify the enzymes responsible for its metabolism. The primary routes of apatinib biotransformation included E-and Z-cyclopentyl-3-hydroxylation, N-dealkylation, pyridyl-25-N-oxidation, 16-hydroxylation, dioxygenation, and O-glucuronidation after 3-hydroxylation. Nine major metabolites were confirmed by comparison with reference standards. The total recovery of the administered dose was 76.8% within 96 hours postdose, with 69.8 and 7.02% of the administered dose excreted in feces and urine, respectively. About 59.0% of the administered dose was excreted unchanged via feces. Unchanged apatinib was detected in negligible quantities in urine, indicating that systemically available apatinib was extensively metabolized. The major circulating metabolite was the pharmacologically inactive E-3-hydroxy-apatinib-O-glucuronide (M9-2), the steady-state exposure of which was 125% that of the apatinib. The steady-state exposures of E-3-hydroxy-apatinib (M1-1), Z-3-hydroxy-apatinib (M1-2), and apatinib-25-N-oxide (M1-6) were 56, 22, and 32% of parent drug exposure, respectively. Calculated as pharmacological activity index values, the contribution of M1-1 to the pharmacology of the drug was 5.42 to 19.3% that of the parent drug. The contribution of M1-2 and M1-6 to the pharmacology of the drug was less than 1%. Therefore, apatinib was a major contributor to the overall pharmacological activity in humans. Apatinib was metabolized primarily by CYP3A4/ 5 and, to a lesser extent, by CYP2D6, CYP2C9, and CYP2E1. UGT2B7 was the main enzyme responsible for M9-2 formation. Both UGT1A4 and UGT2B7 were responsible for Z-3-hydroxyapatinib-O-glucuronide (M9-1) formation

    Interfacial Synthesis of Layer-Oriented 2D Conjugated Metal-Organic Framework Films towards Directional Charge Transport

    Get PDF
    The development of layer-oriented two-dimensional conjugated metal-organic frameworks (2D c-MOFs) enables an access to direct charge transport, dial-in lateral/vertical electronic devices and unveil transport mechanisms, but remains a significant synthetic challenge. Here we report the novel synthesis of metal-phthalocyanine-based p-type semiconducting 2D c-MOF films (Cu2[PcM-O8], M=Cu or Fe) with an unprecedented edge-on layer-orientation at the air/water interface. The edge-on structure for-mation is guided by the pre-organization of metal-phthalocyanine ligands, whose basal plane is perpendicular to the water surface due to their π-π interaction and hydrophobicity. Benefiting from the unique layer orientation, we are able to investigate the lateral and vertical conductivities by DC methods, and thus demonstrate an anisotropic charge transport in the resulting Cu2[PcCu-O8] film. The directional conductivity studies combined with theoretical calculation identify that the intrinsic conductivity is dominated by charge transfer along the interlayer pathway. Moreover, a macroscopic (cm2-size) Hall-effect measurement reveals a Hall mobility of ~4.4 cm2 V-1 s-1 for the obtained Cu2[PcCu-O8] film. The orientation control in semiconducting 2D c-MOFs will enable the develop-ment of various optoelectronic applications and the exploration of unique transport properties

    Taking the pulse of COVID-19: A spatiotemporal perspective

    Full text link
    The sudden outbreak of the Coronavirus disease (COVID-19) swept across the world in early 2020, triggering the lockdowns of several billion people across many countries, including China, Spain, India, the U.K., Italy, France, Germany, and most states of the U.S. The transmission of the virus accelerated rapidly with the most confirmed cases in the U.S., and New York City became an epicenter of the pandemic by the end of March. In response to this national and global emergency, the NSF Spatiotemporal Innovation Center brought together a taskforce of international researchers and assembled implemented strategies to rapidly respond to this crisis, for supporting research, saving lives, and protecting the health of global citizens. This perspective paper presents our collective view on the global health emergency and our effort in collecting, analyzing, and sharing relevant data on global policy and government responses, geospatial indicators of the outbreak and evolving forecasts; in developing research capabilities and mitigation measures with global scientists, promoting collaborative research on outbreak dynamics, and reflecting on the dynamic responses from human societies.Comment: 27 pages, 18 figures. International Journal of Digital Earth (2020

    Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation

    No full text
    Abstract In this paper, we study the complete convergence and complete moment convergence for weighted sums of extended negatively dependent (END) random variables under sub-linear expectations space with the condition of C V [ | X | p l ( | X | 1 / α ) ] 0 l(x)>0l(x)>0 is a slow varying and monotone nondecreasing function). As an application, the Baum-Katz type result for weighted sums of extended negatively dependent random variables is established under sub-linear expectations space. The results obtained in the article are the extensions of the complete convergence and complete moment convergence under classical linear expectation space
    corecore