44 research outputs found

    Early Impact of SARS-CoV-2 Pandemic on Immunization Services in Nigeria

    Get PDF
    Background: By 11 March 2022, there were 450,229,635 coronavirus disease (COVID-19) cases and 6,019,085 deaths globally, with Nigeria reporting 254,637 cases and 3142 deaths. One of the essential healthcare services that have been impacted by the pandemic is routine childhood immunization. According to the 2018 National Demographic and Health Survey, only 31% of children aged 12–23 months were fully vaccinated in Nigeria, and 19% of eligible children in the country had not received any vaccination. A further decline in coverage due to the pandemic can significantly increase the risk of vaccine-preventable-disease outbreaks among children in Nigeria. To mitigate such an occurrence, it is imperative to urgently identify how the pandemic and the response strategies have affected vaccination services, hence, the goal of the study. Methods: The research method was qualitative, including in-depth interviews of healthcare workers and focus group discussions (FGDs) with caregivers of children aged 0–23 months. We selected one state from each of the three zones of Nigeria: northern, central, and southern. Within each state, 10 local government areas and 20 healthcare facilities were purposively selected. In each facility, 10 healthcare workers were invited for interviews. Overall, 517 healthcare workers were interviewed. For the focus group discussion, 30 communities were selected. Within each selected community, six consenting caregivers were included. Overall, 180 caregivers participated. The data were analyzed using thematic inductive content analysis. Results: Three significant impacts that were observed are: difficulties in accessibility to immunization services, declining immunization demand and uptake among caregivers due to varying factors, and erosion of vaccine confidence among both caregivers and healthcare workers. Movement restriction and lockdown had numerous major impacts, such as decreased general healthcare service delivery, increased transportation costs, fewer engagements that promote vaccine uptake, and cessation of mobile vaccination campaigns that target hard-to-reach communities. Moreover, misinformation, conspiracy beliefs about the pandemic and COVID-19 vaccines, and risk perception negatively influenced general vaccine confidence. Conclusion: The results of this early impact study show that immunization was directly affected by the pandemic and provide insights into areas where interventions are needed for recovery

    Definition and characterization of localised meningitis epidemics in Burkina Faso: a longitudinal retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The epidemiology of meningococcal meningitis in the African meningitis belt is characterised by seasonality, localised epidemics and epidemic waves. To facilitate research and surveillance, we aimed to develop a definition for localised epidemics to be used in real-time surveillance based on weekly case reports at the health centre level.</p> <p>Methods</p> <p>We used national routine surveillance data on suspected meningitis from January 2004 to December 2008 in six health districts in western and central Burkina Faso. We evaluated eight thresholds composed of weekly incidence rates at health centre level for their performance in predicting annual incidences of 0.4%and 0.8% in health centre areas. The eventually chosen definition was used to describe the spatiotemporal epidemiology and size of localised meningitis epidemics during the included district years.</p> <p>Results</p> <p>Among eight weekly thresholds evaluated, a weekly incidence rate of 75 cases per 100,000 inhabitants during at least two consecutive weeks with at least 5 cases per week had 100% sensitivity and 98% specificity for predicting an annual incidence of at least 0.8% in health centres. Using this definition, localised epidemics were identified in all but one years during 2004-2008, concerned less than 10% of the districts' population and often were geographically dispersed. Where sufficient laboratory data were available, localised epidemics were exclusively due to meningococci.</p> <p>Conclusions</p> <p>This definition of localised epidemics a the health centre level will be useful for risk factor and modelling studies to understand the meningitis belt phenomenon and help documenting vaccine impact against epidemic meningitis where no widespread laboratory surveillance exists for quantifying disease reduction after vaccination.</p

    Emergence of Epidemic Neisseria meningitidis Serogroup X Meningitis in Togo and Burkina Faso

    Get PDF
    Serogroup X meningococci (NmX) historically have caused sporadic and clustered meningitis cases in sub-Saharan Africa. To study recent NmX epidemiology, we analyzed data from population-based, sentinel and passive surveillance, and outbreak investigations of bacterial meningitis in Togo and Burkina Faso during 2006–2010. Cerebrospinal fluid specimens were analyzed by PCR. In Togo during 2006–2009, NmX accounted for 16% of the 702 confirmed bacterial meningitis cases. Kozah district experienced an NmX outbreak in March 2007 with an NmX seasonal cumulative incidence of 33/100,000. In Burkina Faso during 2007–2010, NmX accounted for 7% of the 778 confirmed bacterial meningitis cases, with an increase from 2009 to 2010 (4% to 35% of all confirmed cases, respectively). In 2010, NmX epidemics occurred in northern and central regions of Burkina Faso; the highest district cumulative incidence of NmX was estimated as 130/100,000 during March–April. Although limited to a few districts, we have documented NmX meningitis epidemics occurring with a seasonal incidence previously only reported in the meningitis belt for NmW135 and NmA, which argues for development of an NmX vaccine

    Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study

    Get PDF
    Background: Seasonal influenza virus is a common cause of acute lower respiratory infection (ALRI) in young children. In 2008, we estimated that 20 million influenza-virus-associated ALRI and 1 million influenza-virus-associated severe ALRI occurred in children under 5 years globally. Despite this substantial burden, only a few low-income and middle-income countries have adopted routine influenza vaccination policies for children and, where present, these have achieved only low or unknown levels of vaccine uptake. Moreover, the influenza burden might have changed due to the emergence and circulation of influenza A/H1N1pdm09. We aimed to incorporate new data to update estimates of the global number of cases, hospital admissions, and mortality from influenza-virus-associated respiratory infections in children under 5 years in 2018. Methods: We estimated the regional and global burden of influenza-associated respiratory infections in children under 5 years from a systematic review of 100 studies published between Jan 1, 1995, and Dec 31, 2018, and a further 57 high-quality unpublished studies. We adapted the Newcastle-Ottawa Scale to assess the risk of bias. We estimated incidence and hospitalisation rates of influenza-virus-associated respiratory infections by severity, case ascertainment, region, and age. We estimated in-hospital deaths from influenza virus ALRI by combining hospital admissions and in-hospital case-fatality ratios of influenza virus ALRI. We estimated the upper bound of influenza virus-associated ALRI deaths based on the number of in-hospital deaths, US paediatric influenza-associated death data, and population-based childhood all-cause pneumonia mortality data in six sites in low-income and lower-middle-income countries. Findings: In 2018, among children under 5 years globally, there were an estimated 109·5 million influenza virus episodes (uncertainty range [UR] 63·1–190·6), 10·1 million influenza-virus-associated ALRI cases (6·8–15·1); 870 000 influenza-virus-associated ALRI hospital admissions (543 000–1 415 000), 15 300 in-hospital deaths (5800–43 800), and up to 34 800 (13 200–97 200) overall influenza-virus-associated ALRI deaths. Influenza virus accounted for 7% of ALRI cases, 5% of ALRI hospital admissions, and 4% of ALRI deaths in children under 5 years. About 23% of the hospital admissions and 36% of the in-hospital deaths were in infants under 6 months. About 82% of the in-hospital deaths occurred in low-income and lower-middle-income countries. Interpretation: A large proportion of the influenza-associated burden occurs among young infants and in low-income and lower middle-income countries. Our findings provide new and important evidence for maternal and paediatric influenza immunisation, and should inform future immunisation policy particularly in low-income and middle-income countries. Funding: WHO; Bill & Melinda Gates Foundation.Fil: Wang, Xin. University of Edinburgh; Reino UnidoFil: Li, You. University of Edinburgh; Reino UnidoFil: O'Brien, Katherine L.. University Johns Hopkins; Estados UnidosFil: Madhi, Shabir A.. University of the Witwatersrand; SudáfricaFil: Widdowson, Marc Alain. Centers for Disease Control and Prevention; Estados UnidosFil: Byass, Peter. Umea University; SueciaFil: Omer, Saad B.. Yale School Of Public Health; Estados UnidosFil: Abbas, Qalab. Aga Khan University; PakistánFil: Ali, Asad. Aga Khan University; PakistánFil: Amu, Alberta. Dodowa Health Research Centre; GhanaFil: Azziz-Baumgartner, Eduardo. Centers for Disease Control and Prevention; Estados UnidosFil: Bassat, Quique. University Of Barcelona; EspañaFil: Abdullah Brooks, W.. University Johns Hopkins; Estados UnidosFil: Chaves, Sandra S.. Centers for Disease Control and Prevention; Estados UnidosFil: Chung, Alexandria. University of Edinburgh; Reino UnidoFil: Cohen, Cheryl. National Institute For Communicable Diseases; SudáfricaFil: Echavarría, Marcela Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Fasce, Rodrigo A.. Public Health Institute; ChileFil: Gentile, Angela. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Gordon, Aubree. University of Michigan; Estados UnidosFil: Groome, Michelle. University of the Witwatersrand; SudáfricaFil: Heikkinen, Terho. University Of Turku; FinlandiaFil: Hirve, Siddhivinayak. Kem Hospital Research Centre; IndiaFil: Jara, Jorge H.. Universidad del Valle de Guatemala; GuatemalaFil: Katz, Mark A.. Clalit Research Institute; IsraelFil: Khuri Bulos, Najwa. University Of Jordan School Of Medicine; JordaniaFil: Krishnan, Anand. All India Institute Of Medical Sciences; IndiaFil: de Leon, Oscar. Universidad del Valle de Guatemala; GuatemalaFil: Lucero, Marilla G.. Research Institute For Tropical Medicine; FilipinasFil: McCracken, John P.. Universidad del Valle de Guatemala; GuatemalaFil: Mira-Iglesias, Ainara. Fundación Para El Fomento de la Investigación Sanitaria; EspañaFil: Moïsi, Jennifer C.. Agence de Médecine Préventive; FranciaFil: Munywoki, Patrick K.. No especifíca;Fil: Ourohiré, Millogo. No especifíca;Fil: Polack, Fernando Pedro. Fundación para la Investigación en Infectología Infantil; ArgentinaFil: Rahi, Manveer. University of Edinburgh; Reino UnidoFil: Rasmussen, Zeba A.. National Institutes Of Health; Estados UnidosFil: Rath, Barbara A.. Vienna Vaccine Safety Initiative; AlemaniaFil: Saha, Samir K.. Child Health Research Foundation; BangladeshFil: Simões, Eric A.F.. University of Colorado; Estados UnidosFil: Sotomayor, Viviana. Ministerio de Salud de Santiago de Chile; ChileFil: Thamthitiwat, Somsak. Thailand Ministry Of Public Health; TailandiaFil: Treurnicht, Florette K.. University of the Witwatersrand; SudáfricaFil: Wamukoya, Marylene. African Population & Health Research Center; KeniaFil: Lay-Myint, Yoshida. Nagasaki University; JapónFil: Zar, Heather J.. University of Cape Town; SudáfricaFil: Campbell, Harry. University of Edinburgh; Reino UnidoFil: Nair, Harish. University of Edinburgh; Reino Unid

    Global respiratory syncytial virus–related infant community deaths

    Get PDF
    Background Respiratory syncytial virus (RSV) is a leading cause of pediatric death, with >99% of mortality occurring in low- and lower middle-income countries. At least half of RSV-related deaths are estimated to occur in the community, but clinical characteristics of this group of children remain poorly characterized. Methods The RSV Global Online Mortality Database (RSV GOLD), a global registry of under-5 children who have died with RSV-related illness, describes clinical characteristics of children dying of RSV through global data sharing. RSV GOLD acts as a collaborative platform for global deaths, including community mortality studies described in this supplement. We aimed to compare the age distribution of infant deaths <6 months occurring in the community with in-hospital. Results We studied 829 RSV-related deaths <1 year of age from 38 developing countries, including 166 community deaths from 12 countries. There were 629 deaths that occurred <6 months, of which 156 (25%) occurred in the community. Among infants who died before 6 months of age, median age at death in the community (1.5 months; IQR: 0.8−3.3) was lower than in-hospital (2.4 months; IQR: 1.5−4.0; P < .0001). The proportion of neonatal deaths was higher in the community (29%, 46/156) than in-hospital (12%, 57/473, P < 0.0001). Conclusions We observed that children in the community die at a younger age. We expect that maternal vaccination or immunoprophylaxis against RSV will have a larger impact on RSV-related mortality in the community than in-hospital. This case series of RSV-related community deaths, made possible through global data sharing, allowed us to assess the potential impact of future RSV vaccines

    The association between respiratory tract infection incidence and localised meningitis epidemics: an analysis of high-resolution surveillance data from Burkina Faso

    No full text
    Abstract Meningococcal meningitis epidemics in the African meningitis belt consist of localised meningitis epidemics (LME) that reach attack proportions of 1% within a few weeks. A meningococcal serogroup A conjugate vaccine was introduced in meningitis belt countries from 2010 on, but LME due to other serogroups continue to occur. The mechanisms underlying LME are poorly understood, but an association with respiratory pathogens has been hypothesised. We analysed national routine surveillance data in high spatial resolution (health centre level) from 13 districts in Burkina Faso, 2004–2014. We defined LME as a weekly incidence rate of suspected meningitis ≥75 per 100,000 during ≥2 weeks; and high incidence episodes of respiratory tract infections (RTI) as the 5th quintile of monthly incidences. We included 10,334 health centre month observations during the meningitis season (January-May), including 85 with LME, and 1891 (1820) high-incidence episodes of upper (lower) RTI. In mixed effects logistic regression accounting for spatial structure, and controlling for dust conditions, relative air humidity and month, the occurrence of LME was strongly associated with high incidence episodes of upper (odds ratio 23.9, 95%-confidence interval 3.1–185.3), but not lower RTI. In the African meningitis belt, meningitis epidemics may be triggered by outbreaks of upper RTI

    Exploring the factors contributing to low vaccination uptake for nationally recommended routine childhood and adolescent vaccines in Kenya

    No full text
    Abstract Background Vaccination remains the most effective means of reducing the burden of infectious disease among children. It is estimated to prevent between two to three million child deaths annually. However, despite being a successful intervention, basic vaccination coverage remains below the target. About 20 million infants are either under or not fully vaccinated, most of whom are in Sub-Saharan Africa region. In Kenya, the coverage is even lower at 83% than the global average of 86%. The objective of this study is to explore the factors that contribute to low demand or vaccine hesitancy for childhood and adolescent vaccines in Kenya. Methods The study used qualitative research design. Key Informant Interviews (KII) was used to obtain information from national and county-level key stakeholders. In-depth Interviews (IDI) was done to collect opinions of caregivers of children 0–23 months and adolescent girls eligible for immunization, and Human papillomavirus (HPV) vaccine respectively. The data was collected at the national level and counties such as Kilifi, Turkana, Nairobi and Kitui. The data was analyzed using thematic content approach. A total of 41 national and county-level immunization officials and caregivers formed the sample. Results Insufficient knowledge about vaccines, vaccine supply issues, frequent healthcare worker’s industrial action, poverty, religious beliefs, inadequate vaccination campaigns, distance to vaccination centers, were identified as factors driving low demand or vaccine hesitancy against routine childhood immunization. While factors driving low uptake of the newly introduced HPV vaccine were reported to include misinformation about the vaccine, rumors that the vaccine is a form of female contraception, the suspicion that the vaccine is free and available only to girls, poor knowledge of cervical cancer and benefits of HPV vaccine. Conclusions Rural community sensitization on both routine childhood immunization and HPV vaccine should be key activities post COVID-19 pandemic. Likewise, the use of mainstream and social media outreaches, and vaccine champions could help reduce vaccine hesitancy. The findings are invaluable for informing design of context-specific interventions by national and county-level immunization stakeholders. Further studies on the relationship between attitude towards new vaccines and connection to vaccine hesitancy is necessary
    corecore