5,138 research outputs found

    Exploiting Sentence Embedding for Medical Question Answering

    Full text link
    Despite the great success of word embedding, sentence embedding remains a not-well-solved problem. In this paper, we present a supervised learning framework to exploit sentence embedding for the medical question answering task. The learning framework consists of two main parts: 1) a sentence embedding producing module, and 2) a scoring module. The former is developed with contextual self-attention and multi-scale techniques to encode a sentence into an embedding tensor. This module is shortly called Contextual self-Attention Multi-scale Sentence Embedding (CAMSE). The latter employs two scoring strategies: Semantic Matching Scoring (SMS) and Semantic Association Scoring (SAS). SMS measures similarity while SAS captures association between sentence pairs: a medical question concatenated with a candidate choice, and a piece of corresponding supportive evidence. The proposed framework is examined by two Medical Question Answering(MedicalQA) datasets which are collected from real-world applications: medical exam and clinical diagnosis based on electronic medical records (EMR). The comparison results show that our proposed framework achieved significant improvements compared to competitive baseline approaches. Additionally, a series of controlled experiments are also conducted to illustrate that the multi-scale strategy and the contextual self-attention layer play important roles for producing effective sentence embedding, and the two kinds of scoring strategies are highly complementary to each other for question answering problems.Comment: 8 page

    Molecular Dynamics Simulation of Strong Shock Waves Propagating in Dense Deuterium With the Effect of Excited Electrons

    Full text link
    We present a molecular dynamics simulation of shock waves propagating in dense deuterium with the electron force field method [J. T. Su and W. A. Goddard, Phys. Rev. Lett. 99, 185003 (2007)], which explicitly takes the excitation of electrons into consideration. Non-equilibrium features associated with the excitation of electrons are systematically investigated. We show that chemical bonds in D2_2 molecules lead to a more complicated shock wave structure near the shock front, compared with the results of classical molecular dynamics simulation. Charge separation can bring about accumulation of net charges on the large scale, instead of the formation of a localized dipole layer, which might cause extra energy for the shock wave to propagate. In addition, the simulations also display that molecular dissociation at the shock front is the major factor corresponding to the "bump" structure in the principal Hugoniot. These results could help to build a more realistic picture of shock wave propagation in fuel materials commonly used in the inertial confinement fusion

    Analytical approach of late-time evolution in a torsion cosmology

    Full text link
    In this letter, we study the late-time evolution of a torsion cosmology only with the spin-0+0^+ mode. We find three kinds of analytical solutions with a constant affine scalar curvature. In the first case, it is not physical because the matter density will be negative. In the second case, it shows that the dark energy can be mimicked in the torsion cosmological model. In the third case, the characteristic of late-time evolution is similar to that of the universe of matter dominant. And we also find a kind of expression with the non-constant curvature that the periodic character of numerical calculation is only the reflection of solution in a specific period of evolution. Using these expressions, we shall be able to predict the evolution over the late-time. From this prediction, we know the fate of universe that the universe would expand forever, slowly asymtotically to a halt.Comment: 12pages,6 figure

    Investigating the topological structure of quenched lattice QCD with overlap fermions by using multi-probing approximation

    Full text link
    The topological charge density and topological susceptibility are determined by multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density, the results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. Pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 33 ensembles of different lattice spacing aa with the same lattice volume 163×3216^{3}\times32, the results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than that by eigenmode expansion.Comment: 12 pages,34 figure

    Enhanced oxidation resistance of active nanostructures via dynamic size effect.

    Get PDF
    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeO NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O2. We find this dynamic size effect to govern the chemical properties of active NSs
    • …
    corecore