632 research outputs found

    Effects of controllable biaxial strain on the Raman spectra of monolayer graphene prepared by chemical vapor deposition

    Get PDF
    Author name used in this publication: Hui, Yeung YuAuthor name used in this publication: Lau, Shu PingAuthor name used in this publication: Hao, Jianhua2012-2013 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Urban energy consumption and CO2 emissions in Beijing: current and future

    Get PDF
    This paper calculates the energy consumption and CO2 emissions of Beijing over 2005–2011 in light of the Beijing’s energy balance table and the carbon emission coefficients of IPCC. Furthermore, based on a series of energy conservation planning program issued in Beijing, the Long-range Energy Alternatives Planning System (LEAP)-BJ model is developed to study the energy consumption and CO2 emissions of Beijing’s six end-use sectors and the energy conversion sector over 2012–2030 under the BAU scenario and POL scenario. Some results are found in this research: (1) During 2005–2011, the energy consumption kept increasing, while the total CO2 emissions fluctuated obviously in 2008 and 2011. The energy structure and the industrial structure have been optimized to a certain extent. (2) If the policies are completely implemented, the POL scenario is projected to save 21.36 and 35.37 % of the total energy consumption and CO2 emissions than the BAU scenario during 2012 and 2030. (3) The POL scenario presents a more optimized energy structure compared with the BAU scenario, with the decrease of coal consumption and the increase of natural gas consumption. (4) The commerce and service sector and the energy conversion sector will become the largest contributor to energy consumption and CO2 emissions, respectively. The transport sector and the industrial sector are the two most potential sectors in energy savings and carbon reduction. In terms of subscenarios, the energy conservation in transport (TEC) is the most effective one. (5) The macroparameters, such as the GDP growth rate and the industrial structure, have great influence on the urban energy consumption and carbon emissions

    Searching for network modules

    Full text link
    When analyzing complex networks a key target is to uncover their modular structure, which means searching for a family of modules, namely node subsets spanning each a subnetwork more densely connected than the average. This work proposes a novel type of objective function for graph clustering, in the form of a multilinear polynomial whose coefficients are determined by network topology. It may be thought of as a potential function, to be maximized, taking its values on fuzzy clusterings or families of fuzzy subsets of nodes over which every node distributes a unit membership. When suitably parametrized, this potential is shown to attain its maximum when every node concentrates its all unit membership on some module. The output thus is a partition, while the original discrete optimization problem is turned into a continuous version allowing to conceive alternative search strategies. The instance of the problem being a pseudo-Boolean function assigning real-valued cluster scores to node subsets, modularity maximization is employed to exemplify a so-called quadratic form, in that the scores of singletons and pairs also fully determine the scores of larger clusters, while the resulting multilinear polynomial potential function has degree 2. After considering further quadratic instances, different from modularity and obtained by interpreting network topology in alternative manners, a greedy local-search strategy for the continuous framework is analytically compared with an existing greedy agglomerative procedure for the discrete case. Overlapping is finally discussed in terms of multiple runs, i.e. several local searches with different initializations.Comment: 10 page

    Identification of Autotoxic Compounds in Fibrous Roots of Rehmannia (Rehmannia glutinosa Libosch.)

    Get PDF
    Rehmannia is a medicinal plant in China. Autotoxicity has been reported to be one of the major problems hindering the consecutive monoculture of Rehmannia. However, potential autotoxins produced by the fibrous roots are less known. In this study, the autotoxicity of these fibrous roots was investigated. Four groups of autotoxic compounds from the aqueous extracts of the fibrous roots were isolated and characterized. The ethyl acetate extracts of these water-soluble compounds were further analyzed and separated into five fractions. Among them, the most autotoxic fraction (Fr 3) was subjected to GC/MS analysis, resulting in 32 identified compounds. Based on literature, nine compounds were selected for testing their autotoxic effects on radicle growth. Seven out of the nine compounds were phenolic, which significantly reduced radicle growth in a concentration-dependent manner. The other two were aliphatic compounds that showed a moderate inhibition effect at three concentrations. Concentration of these compounds in soil samples was determined by HPLC. Furthermore, the autotoxic compounds were also found in the top soil of the commercially cultivated Rehmannia fields. It appears that a close link exists between the autotoxic effects on the seedlings and the compounds extracted from fibrous roots of Rehmannia

    MicroRNA-211 Expression Promotes Colorectal Cancer Cell Growth In Vitro and In Vivo by Targeting Tumor Suppressor CHD5

    Get PDF
    Background: Chromodomain-helicase-DNA-binding protein 5 (CHD5) is a newly identified tumor suppressor that is frequently downregulated in a variety of human cancers. Our previous work revealed that the low expression of CHD5 in colorectal cancer is correlated with CHD5 promoter CpG island hypermethylation. In this study, we investigated the effect of microRNA-211 (miR-211)-regulated CHD5 expression on colorectal tumorigenesis. Methodology/Principal Findings: miR-211 was predicted to target CHD5 by TargetScan software analysis. A stably expressing exogenous miR-211 colorectal cancer cell line (HCT-116 miR-211) was generated using lentiviral transduction and used as a model for in vitro and in vivo studies. The expression level of miR-211 in HCT-116 miR-211 cells was upregulated by 16-fold compared to vector control cells (HCT-116 vector). Exogenous miR-211 directly binds to the 39-untranslated region (39-UTR) of CHD5 mRNA, resulting in a 50 % decrease in CHD5 protein level in HCT-116 miR-211 cells. The levels of cell proliferation, tumor growth, and cell migration of HCT-116 miR-211 cells were significantly higher than HCT-116 vector cells under both in vitro and in vivo conditions, as determined using the methods of MTT, colony formation, flow cytometry, scratch assay, and tumor xenografts, respectively. In addition, we found that enforced expression of miR-211 in HCT-116 cells was able to alter p53 pathway-associated regulatory proteins, such as MDM2, Bcl-2, Bcl-xL, and Bax. Conclusion/Significance: Our results demonstrate that CHD5 is a direct target of miR-211 regulation. Enforced expression o

    Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Amundsen Sea, West Antarctica during the austral summer

    Get PDF
    Virioplankton and picoplankton are the most abundant marine biological entities on earth and mediate biogeochemical cycles in the Southern Ocean. However, understanding of their distribution and relationships with environmental factors is lacking. Here, we report on their distribution and relationships with environmental factors at 48 stations from 112.5Β° to 150Β°W and 67Β° to 75.5Β°S in the Amundsen Sea of West Antarctica. The epipelagic stations were grouped into four clusters based on the virio- and picoplankton composition and abundance. Clusters three and four, which were associated with the ice-edge blooms in the coastal and Amundsen Sea Polynya (ASP) areas, had high abundances of autotrophic picoeukaryotes; this resulted in subsequent high abundances of heterotrophic prokaryotes and viruses. Cluster two stations were in open oceanic areas, where the abundances of autotrophic and heterotrophic picoplankton were low. Cluster one stations were located between the areas of blooms and the oceanic areas, which had a low abundance of heterotrophic prokaryotes and picoeukaryotes and a high abundance of virioplankton. The abundance of viruses was significantly correlated with the abundances of autotrophic picoeukaryotes and Chl-a concentration in oceanic areas, although this reflected a time-lag with autotrophic picoeukaryote and heterotrophic prokaryotes abundances in ice-edge bloom areas. The upwelling of Circumpolar Deep Water (CDW) might have induced the high abundance of autotrophic picoeukaryotes in the epipelagic zone, and the sinking particulate organic carbon (POC) might have induced the high abundance of heterotrophic prokaryotes and virioplankton in the meso- and bathypelagic zones. This study shows that the summer distribution of virio- and picoplankton in the Amundsen Sea of West Antarctica was mainly controlled by upwelling of the CDW and the timing of ice-edge blooms

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factorsβ€”the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57Β·8% (95% CI 56Β·6–58Β·8) of global deaths and 41Β·2% (39Β·8–42Β·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211Β·8 million [192Β·7 million to 231Β·1 million] global DALYs), smoking (148Β·6 million [134Β·2 million to 163Β·1 million]), high fasting plasma glucose (143Β·1 million [125Β·1 million to 163Β·5 million]), high BMI (120Β·1 million [83Β·8 million to 158Β·4 million]), childhood undernutrition (113Β·3 million [103Β·9 million to 123Β·4 million]), ambient particulate matter (103Β·1 million [90Β·8 million to 115Β·1 million]), high total cholesterol (88Β·7 million [74Β·6 million to 105Β·7 million]), household air pollution (85Β·6 million [66Β·7 million to 106Β·1 million]), alcohol use (85Β·0 million [77Β·2 million to 93Β·0 million]), and diets high in sodium (83Β·0 million [49Β·3 million to 127Β·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Contribution of human hematopoietic stem cells to liver repair

    Get PDF
    Immune-deficient mouse models of liver damage allow examination of human stem cell migration to sites of damage and subsequent contribution to repair and survival. In our studies, in the absence of a selective advantage, transplanted human stem cells from adult sources did not robustly become hepatocytes, although some level of fusion or hepatic differentiation was documented. However, injected stem cells did home to the injured liver tissue and release paracrine factors that hastened endogenous repair and enhanced survival. There were significantly higher levels of survival in mice with a toxic liver insult that had been transplanted with human stem cells but not in those transplanted with committed progenitors. Transplantation of autologous adult stem cells without conditioning is a relatively safe therapy. Adult stem cells are known to secrete bioactive factors that suppress the local immune system, inhibit fibrosis (scar formation) and apoptosis, enhance angiogenesis, and stimulate recruitment, retention, mitosis, and differentiation of tissue-residing stem cells. These paracrine effects are distinct from the direct differentiation of stem cells to repair tissue. In patients at high risk while waiting for a liver transplant, autologous stem cell therapy could be considered, as it could delay the decline in liver function
    • …
    corecore