44 research outputs found

    miR2Disease: a manually curated database for microRNA deregulation in human disease

    Get PDF
    ‘miR2Disease’, a manually curated database, aims at providing a comprehensive resource of microRNA deregulation in various human diseases. The current version of miR2Disease documents 1939 curated relationships between 299 human microRNAs and 94 human diseases by reviewing more than 600 published papers. Around one-seventh of the microRNA–disease relationships represent the pathogenic roles of deregulated microRNA in human disease. Each entry in the miR2Disease contains detailed information on a microRNA–disease relationship, including a microRNA ID, the disease name, a brief description of the microRNA–disease relationship, an expression pattern of the microRNA, the detection method for microRNA expression, experimentally verified target gene(s) of the microRNA and a literature reference. miR2Disease provides a user-friendly interface for a convenient retrieval of each entry by microRNA ID, disease name, or target gene. In addition, miR2Disease offers a submission page that allows researchers to submit established microRNA–disease relationships that are not documented. Once approved by the submission review committee, the submitted records will be included in the database. miR2Disease is freely available at http://www.miR2Disease.org

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Suitability Evaluation of Urban Construction Land Based on an Approach of Vertical-Horizontal Processes

    No full text
    Suitability evaluation of urban construction land is critical for both urban master planning and the proper utilization of land resources. Using the Beihu New District of Jining City, China, as a case study, this paper introduces a novel research approach for comprehensive suitability evaluation based on vertical-horizontal processes. First, by considering both the land development potential and ecological constraint resistance, the potential-resistance (PR) model was developed and used to analyze the suitability for urban construction of vertical processes. Then, given the results of the vertical suitability analysis, the current urban built-up areas were selected as the sources of urban expansion, and the minimum cumulative resistance (MCR) model was applied to evaluate the suitability for urban development in terms of horizontal processes. The study area was regionalized into four categories&mdash;priority, suitable, restricted, and prohibited areas&mdash;which were defined based on the development threshold. The results showed that restricted and prohibited areas for urban construction occupied most of the study area. Totally, 648.51 km2 was categorized as restricted or prohibited, accounting for 12.89% and 54.75% of the total area, respectively. Priority and suitable areas for urban construction covered a total area of 310.37 km2, accounting for 16.55% and 15.81% of the total area, respectively. These areas were mainly distributed around urban centers and urban built-up areas. These findings reflect the substantial potential for future urban development and construction in the study area. The newly developed principles and methods of suitability evaluation for urban construction land presented in this paper provide more appropriate scales and spatial location for urban development and an ecological baseline for future urban growth

    Adsorption and photocatalytic degradation of phenol over TiO2/ACF

    No full text
    The adsorption and photocatalytic degradation of phenol in water were investigated in a cylindrical borosilicon glass photoreactor with a cooling water jacket using TiO_2/ACF as photocatalyst. A 15W UV lamp(254nm) was used as central light source. The effects of the temperature and initial concentration of phenol solution on adsorption and photocatalytic process were studied, and the comparison of adsorption, photolysis and photocatalysis was conducted. The results show that the classical model of Langmuir gives a good description of the adsorption of phenol on TiO_2/ACF and low temperature can improve the adsorption of phenol on photocatalyst; increasing temperature can increase the photocatalytic degradation rate of phenol; and the adsorption enhances the photocatalytic removal of phenol

    Joint Ship Detection Based on Time-Frequency Domain and CFAR Methods with HF Radar

    No full text
    Compact high-frequency surface wave radar (HFSWR) plays a critical role in ship surveillance. Due to the wide antenna beam-width and low spatial gain, traditional constant false alarm rate (CFAR) detectors often induce a low detection probability. To solve this problem, a joint detection algorithm based on time-frequency (TF) analysis and the CFAR method is proposed in this paper. After the TF ridge extraction, CFAR detection is performed to test each sample of the ridges, and a binary integration is run to determine whether the entire TF ridge is of a ship. To verify the effectiveness of the proposed algorithm, experimental data collected by the Ocean State Monitoring and Analyzing Radar, type SD (OSMAR-SD) were used, with the ship records from an automatic identification system (AIS) used as ground truth data. The processing results showed that the joint TF-CFAR method outperformed CFAR in detecting non-stationary and weak signals and those within the first-order sea clutters, whereas CFAR outperformed TF-CFAR in identifying multiple signals with similar frequencies. Notably, the intersection of the matched detection sets by TF-CFAR and CFAR alone was not immense, which takes up approximately 68% of the matched number by CFAR and 25% of that by TF-CFAR; however, the number in the union detection sets was much (&gt;30%) greater than the result of either method. Therefore, joint detection with TF-CFAR and CFAR can further increase the detection probability and greatly improve detection performance under complicated situations, such as non-stationarity, low signal-to-noise ratio (SNR), and within the first-order sea clutters
    corecore