22 research outputs found

    CALCULATION OF BRAKING FORCE IN EDDY CURRENT BRAKES

    Get PDF

    The heart of the swarm: K2 photometry and rotational characteristics of 56 Jovian Trojan asteroids

    Get PDF
    We present fully covered phased light curves for 56 Jovian Trojan asteroids as acquired by the K2 mission of the Kepler space telescope. This set of objects has been monitored during Campaign 6 and represents a nearly unbiased subsample of the population of small Solar System bodies. We derived precise periods and amplitudes for all Trojans, and found their distributions to be compatible with the previous statistics. We point out, however, that ground-based rotation periods are often unreliable above 20h, and we find an overabundance of rotation periods above 60h compared with other minor planet populations. From amplitude analysis we derive a rate of binarity of 20 ±± 5%. Our spin rate distribution confirms the previously obtained spin barrier of ~5h and the corresponding ~0.5 g cm −3−3 cometary-like density limit, also suggesting a high internal porosity for Jovian Trojans. One of our targets, asteroid 65227 exhibits a double rotation period, which can either be due to binarity or the outcome of a recent collision

    Properties of the Irregular Satellite System around Uranus Inferred from K2, Herschel, and Spitzer Observations

    Get PDF
    In this paper, we present visible-range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand, and Setebos taken with the Kepler Space Telescope over the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analyzed and used to determine size, albedo, and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seem to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young solar system inside the orbit of Uranus

    The Weakening Outburst of the Young Eruptive Star V582 Aur

    Get PDF
    V582 Aur is a pre-main sequence FU Orionis type eruptive star, which entered a brightness minimum in 2016 March due to changes in the line-of-sight extinction. Here, we present and analyze new optical BB, VV, RCR_C and ICI_C band multiepoch observations and new near-infrared JJ, HH and KSK_S band photometric measurements from 2018 January-2019 February, as well as publicly available mid-infrared WISE data. We found that the source shows a significant optical-near-infrared variability, and the current brightness minimum has not completely finished yet. If the present dimming originates from the same orbiting dust clump that caused a similar brightness variation in 2012, than our results suggest a viscous spreading of the dust particles along the orbit. Another scenario is that the current minimum is caused by a dust structure, that is entering and leaving the inner part of the system. The WISE measurements could be consistent with this scenario. Our long-term data, as well as an accretion disk modeling hint at a general fading of V582 Aur, suggesting that the source will reach the quiescent level in \sim80 years.Comment: 8 pages, 4 figures, accepted for publication in Ap

    Mid-infrared time-domain study of recent dust production events in the extreme debris disc of TYC 4209-1322-1

    Get PDF
    Extreme debris discs are characterized by unusually strong mid-infrared excess emission, which often proves to be variable. The warm dust in these discs is of transient nature and is likely related to a recent giant collision occurring close to the star in the terrestrial region. Here we present the results of a 877 days long, gap-free photometric monitoring performed by the Spitzer Space Telescope of the recently discovered extreme debris disc around TYC 4209-1322-1. By combining these observations with other time-domain optical and mid-infrared data, we explore the disc variability of the last four decades, with particular emphasis on the last 12 years. During the latter interval the disc showed substantial changes, the most significant was the brightening and subsequent fading between 2014 and 2018 as outlined in WISE data. The Spitzer light curves outline the fading phase and a subsequent new brightening of the disc after 2018, revealing an additional flux modulation with a period of ~39 days on top of the long-term trend. We found that all these variations can be interpreted as the outcome of a giant collision that happened at an orbital radius of ~0.3 au sometime in 2014. Our analysis implies that a collision on a similar scale could have taken place around 2010, too. The fact that the disc was already peculiarly dust rich 40 years ago, as implied by IRAS data, suggests that these dust production events belong to a chain of large impacts triggered by an earlier even more catastrophic collision

    The Peculiar Transient AT2018cow: A Possible Origin of A Type Ibn/IIn Supernova

    Get PDF
    We present our photometric and spectroscopic observations on the peculiar transient AT2018cow. The multi-band photometry covers from peak to sim\\sim70 days and the spectroscopy ranges from 5 to sim\\sim50 days. The rapid rise (tmathrmrt_{\\mathrm{r}}lesssim\\lesssim2.9 days), high luminosity (MV,mathrmpeaksimM_{V,\\mathrm{peak}}\\sim-20.8 mag) and fast decline after peak make AT2018cow stand out of any other optical transients. While we find that its light curves show high resemblance to those of type Ibn supernovae. Moreover, the spectral energy distribution remains high temperature of sim\\sim14,000 K after sim\\sim15 days since discovery. The spectra are featureless in the first 10 days, while some broad emission lines due to H, He, C and O emerge later, with velocity declining from sim\\sim14,000 km s1^{-1} to sim\\sim3000 km s1^{-1} at the end of our observations. Narrow and weak He I emission lines emerge in the spectra at t>t>20 days since discovery. These emission lines are reminiscent of the features seen in interacting supernovae like type Ibn and IIn subclasses. We fit the bolometric light curves with a model of circumstellar interaction (CSI) and radioactive decay (RD) of \\Ni and find a good fit with ejecta mass MmathrmejsimM_{\\mathrm{ej}}\\sim3.16 Modot_{\\odot}, circumstellar material mass MmathrmCSMsimM_{\\mathrm{CSM}}\\sim0.04 Modot_{\\odot}, and ejected \\Ni mass M56mathrmNisimM_{^{56}\\mathrm{Ni}}\\sim0.23 Modot_{\\odot}. The CSM shell might be formed in an eruptive mass ejection of the progenitor star. Furthermore, host environment of AT2018cow implies connection of AT2018cow with massive stars. Combining observational properties and the light curve fitting results, we conclude that AT2018cow might be a peculiar interacting supernova originated from a massive star
    corecore