9 research outputs found

    Effects of background gas on sulfur hexafluoride removal by atmospheric dielectric barrier discharge plasma

    No full text
    The effects of background gases (He, Ar, N2 and air) on SF6 removal in a dielectric barrier reactor were investigated at atmospheric pressure. A comparison among these background gases was performed in terms of discharge voltage, discharge power, mean electron energy, electron density, removal efficiency and energy yield for the destruction of SF6. Results showed that the discharge voltage of He and Ar was lower than that of N2 and air, but the difference of their discharge power was small. Compared with three other background gases, Ar had a relatively superior destruction and removal rate and energy yield since the mean electron energy and electron density in SF6/H2O/Ar plasma were both maintained at a high level. Complete removal of 2% SF6 could be achieved at a discharge power of 48.86 W with Ar and the corresponding energy yield can reach 4.8 g/kWh

    Analysis of Settlement Behaviour of Soft Ground Under Wide Embankment

    No full text
    An elastoplastic numerical model for calculating the consolidation settlement of wide embankment on soft ground is established using PLAXIS finite element software to investigate the settlement behaviour of soft ground under the wide embankment. The distribution rules are analysed and compared to narrow embankments, such as surface settlements of ground and embankment, lateral displacement of soft ground at the foot of embankment slope and excess pore pressure in soft ground. The influence rule of elastic modulus of soft ground on the settlement of soft ground under wide embankment is discussed. The results show that the settlement distributions of wide and narrow embankments on soft ground are “W” and “V” shapes, respectively. The maximum settlement of wide embankment is near the foot of the embankment slope, which is unequal to the settlement at the centreline of the embankment. The lateral displacement distribution rules of soft ground are both “belly” shaped at the foot of two types of embankments slope. However, the lateral displacement of the wide embankment is larger in each corresponding stage. During the construction period, the excess pore pressure in the soft ground under the wide embankment is much higher than that of the narrow embankment, so the post-construction consolidation time of the wide embankment is longer. Moreover, the macroscopic settlement rule of the wide embankment is still the same with the increase of elastic modulus of soft ground

    Defects controlled hole doping and multivalley transport in SnSe single crystals

    No full text
    Knowledge of the electronic structure of group-IV monochalcogenides is essential for their application in high-performance thermoelectric energy harvesting. Here, using photoemission spectroscopy, the authors reveal the impact of doping, and the anisotropic nature of the band structure of SnSe
    corecore