26 research outputs found

    The Diagnostic Role of Normalized and Mean Apparent Diffusion Coefficient in Differentiation between Pancreatic Lesions

    Get PDF
    Background: Diffusion-weighted magnetic resonance imaging (DWI) with quantification of apparent diffusion coefficient (ADC) values is well established in the diagnosis of a variety of abdominal abnormalities. Regarding pancreatic disease, several investigators have shown that DWI with ADC measurement helps detect and characterize focal pancreatic lesions, as well as assess the severity of other pancreatic conditions.Objective: The study aimed to evaluate the diagnostic role of both normalized and mean apparent diffusion coefficient in discrimination between pancreatic lesions.Patients and Methods: Thirty-one participants presented with pancreatic lesions using clinical examination and ultrasound. Dynamic contrast MRI abdomen with diffusion-weighted MR imaging (DWI) on a 1.5-Tesla MRI machine was done. Mean ADC and normalized ADC (as the ratio of ADC of the lesion to the adjacent normal pancreas) were measured and compared. Results: Our study reported a mean ADC cut value of ≤1.47 while the cut-off value for normalized ADC was ≤ 0.96. Normalized ADC revealed a higher sensitivity 92.31%, specificity 88.89%, PPV 85.71, NPV 94.12%, accuracy 90.32%, positive likelihood ratio 8.31 and negative likelihood ratio 0.09 as compared to mean ADC, which revealed sensitivity 84.62%, specificity 77.78%, PPV 73.33%, NPV 87.5%, accuracy 80.65%, positive likelihood ratio 3.81 and negative likelihood ratio 0.2 respectively. Conclusion: Measuring the mean and normalized ADC value in pancreatic focal lesions can significantly differentiate between benign and malignant pancreatic lesions. However, normalized ADC has a higher sensitivity, specificity, PPV, and NPV than mean ADC value and could be used to differentiate between pancreatic lesions with higher accuracy than mean ADC

    ICTV virus taxonomy profile: Chaseviridae 2022

    Get PDF
    Members of the family Chaseviridae are lytic bacterial viruses infecting representatives of the bacterial class Gammaproteobacteria. Chaseviruses have a global distribution. Virions of members of this family have a myovirus morphology (icosahedral head with contractile tail). Genomes are dsDNA of 52–56 kbp with G+C content ranging from 39.3–52.5 %. Chaseviruses, like members of the family Autographiviridae, encode a large single subunit RNA polymerase, but unlike those viruses their promoter sequences have not yet been identified. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Chaseviridae, which is available at ictv.global/report/chaseviridae

    ECOPHAGE: Combating Antimicrobial Resistance Using Bacteriophages for Eco-Sustainable Agriculture and Food Systems

    Get PDF
    The focus of this meeting was to discuss the suitability of using bacteriophages as alternative antimicrobials in the agrifood sector. Following a One Health approach, the workshop explored the possibilities of implementing phage application strategies in the agriculture, animal husbandry, aquaculture, and food production sectors. Therefore, the meeting had gathered phage researchers, representatives of the agrifood industry, and policymakers to debate the advantages and potential shortcomings of using bacteriophages as alternatives to traditional antimicrobials and chemical pesticides. Industry delegates showed the latest objectives and demands from consumers. Representatives of regulatory agencies (European Medicines Agency (EMA) and Spanish Agency of Medicines and Health Products (AEMPS)) presented an update of new regulatory aspects that will impact and support the approval and implementation of phage application strategies across the different sectors

    A suggested new bacteriophage genus: “Viunalikevirus”

    Get PDF
    We suggest a bacteriophage genus, “Viunalikevirus”, as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and ΦSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00705-012-1360-5) contains supplementary material, which is available to authorized users

    Internet-based search of randomised trials relevant to mental health originating in the Arab world

    Get PDF
    BACKGROUND: The internet is becoming a widely used source of accessing medical research through various on-line databases. This instant access to information is of benefit to busy clinicians and service users around the world. The population of the Arab World is comparable to that of the United States, yet it is widely believed to have a greatly contrasting output of randomised controlled trials related to mental health. This study was designed to investigate the existence of such research in the Arab World and also to investigate the availability of this research on-line. METHODS: Survey of findings from three internet-based potential sources of randomised trials originating from the Arab world and relevant to mental health care. RESULTS: A manual search of an Arabic online current contents service identified 3 studies, MEDLINE, EMBASE, and PsycINFO searches identified only 1 study, and a manual search of a specifically indexed, study-based mental health database, PsiTri, revealed 27 trials. CONCLUSION: There genuinely seem to be few trials from the Arab world and accessing these on-line was problematic. Replication of some studies that guide psychiatric/psychological practice in the Arab world would seem prudent

    A proposed new bacteriophage subfamily: “Jerseyvirinae”

    Get PDF
    © 2015, Springer-Verlag Wien. Based on morphology and comparative nucleotide and protein sequence analysis, a new subfamily of the family Siphoviridae is proposed, named “Jerseyvirinae” and consisting of three genera, “Jerseylikevirus”, “Sp3unalikevirus” and “K1glikevirus”. To date, this subfamily consists of 18 phages for which the genomes have been sequenced. Salmonella phages Jersey, vB_SenS_AG11, vB_SenS-Ent1, vB_SenS-Ent2, vB_SenS-Ent3, FSL SP-101, SETP3, SETP7, SETP13, SE2, SS3e and wksl3 form the proposed genus “Jerseylikevirus”. The proposed genus “K1glikevirus” consists of Escherichia phages K1G, K1H, K1ind1, K1ind2 and K1ind3. The proposed genus “Sp3unalikevirus” contains one member so far. Jersey-like phages appear to be widely distributed, as the above phages were isolated in the UK, Canada, the USA and South Korea between 1970 and the present day. The distinguishing features of this subfamily include a distinct siphovirus morphotype, genomes of 40.7-43.6kb (49.6-51.4mol% G+C), a syntenic genome organisation, and a high degree of nucleotide sequence identity and shared proteins. All known members of the proposed subfamily are strictly lytic

    A Shigella boydii bacteriophage which resembles Salmonella phage ViI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lytic bacteriophages have been applied successfully to control the growth of various foodborne pathogens. Sequencing of their genomes is considered as an important preliminary step to ensure their safety prior to food applications.</p> <p>Results</p> <p>The lytic bacteriophage, ΦSboM-AG3, targets the important foodborne pathogen, <it>Shigella</it>. It is morphologically similar to phage ViI of <it>Salmonella enterica </it>serovar Typhi and a series of phages of <it>Acinetobacter calcoaceticus </it>and <it>Rhizobium meliloti</it>. The complete genome of ΦSboM-AG3 was determined to be 158 kb and was terminally redundant and circularly permuted. Two hundred and sixteen open reading frames (ORFs) were identified and annotated, most of which displayed homology to proteins of <it>Salmonella </it>phage ViI. The genome also included four genes specifying tRNAs.</p> <p>Conclusions</p> <p>This is the first time that a Vi-specific phage for <it>Shigella </it>has been described. There is no evidence for the presence of virulence and lysogeny-associated genes. In conclusion, the genome analysis of ΦSboM-AG3 indicates that this phage can be safely used for biocontrol purposes.</p

    The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications?

    No full text
    Extended overuse and misuse of antibiotics and other antibacterial agents has resulted in an antimicrobial resistance crisis. Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools. This review aims to provide a balanced perspective on bacteriophages by outlining advantages, challenges, and future steps needed in order to boost their therapeutic and biocontrol potential, while also providing insight on their potential role in contributing to bacterial evolution and survival
    corecore