23 research outputs found

    Association between Frequency of Chromosomal Aberrations and Cancer Risk Is Not Influenced by Genetic Polymorphisms in GSTM1 and GSTT1

    Get PDF
    To evaluate the role of polymorphisms in glutathione S-transferase M1 (GSTM1) and theta 1 (GSTT1) as effect modifiers of the association between CA and cancer risk. A case-control study was performed pooling data from cytogenetic studies carried out in 1974-1995 in three laboratories in Italy, Norway, and Denmark. The subjects were classified as low, medium, and high by tertile of CA frequency. The data were analysed by setting up a Bayesian model which included prior information about cancer risk by CA frequency

    Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study

    Get PDF
    BACKGROUND: Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Less is known about other DNA repair pathways in colorectal carcinogenesis. In this study we have focused on the XRCC1, XRCC3 and XPD genes, involved in base excision repair, homologous recombinational repair and nucleotide excision repair, respectively. METHODS: We used a case-control study design (157 carcinomas, 983 adenomas and 399 controls) to test the association between five polymorphisms in these DNA repair genes (XRCC1 Arg(194)Trp, Arg(280)His, Arg(399)Gln, XRCC3 Thr(241)Met and XPD Lys(751)Gln), and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression model adjusting for age, gender, cigarette smoking and alcohol consumption. RESULTS: The XRCC1 280His allele was associated with an increased risk of adenomas (OR 2.30, 95% CI 1.19–4.46). The XRCC1 399Gln allele was associated with a reduction of risk of high-risk adenomas (OR 0.62, 95% CI 0.41–0.96). Carriers of the variant XPD 751Gln allele had an increased risk of low-risk adenomas (OR 1.40, 95% CI 1.03–1.89), while no association was found with risk of carcinomas. CONCLUSION: Our results suggest an increased risk for advanced colorectal neoplasia in individuals with the XRCC1 Arg(280)His polymorphism and a reduced risk associated with the XRCC1 Arg(399)Gln polymorphism. Interestingly, individuals with the XPD Lys(751)Gln polymorphism had an increased risk of low-risk adenomas. This may suggest a role in regression of adenomas

    Increased mRNA expression levels of ERCC1, OGG1 and RAI in colorectal adenomas and carcinomas

    Get PDF
    BACKGROUND: The majority of colorectal cancer (CRC) cases develop through the adenoma-carcinoma pathway. If an increase in DNA repair expression is detected in both early adenomas and carcinomas it may indicate that low repair capacity in the normal mucosa is a risk factor for adenoma formation. METHODS: We have examined mRNA expression of two DNA repair genes, ERCC1 and OGG1 as well as the putative apoptosis controlling gene RAI, in normal tissues and lesions from 36 cases with adenomas (mild/moderat n = 21 and severe n = 15, dysplasia) and 9 with carcinomas. RESULTS: Comparing expression levels of ERCC1, OGG1 and RAI between normal tissue and all lesions combined yielded higher expression levels in lesions, 3.3-fold higher (P = 0.005), 5.6-fold higher(P < 3·10(-5)) and 7.7-fold higher (P = 0.0005), respectively. The levels of ERCC1, OGG1 and RAI expressions when comparing lesions, did not differ between adenomas and CRC cases, P = 0.836, P = 0.341 and P = 0.909, respectively. When comparing expression levels in normal tissue, the levels for OGG1 and RAI from CRC cases were significantly lower compared to the cases with adenomas, P = 0.012 and P = 0.011, respectively. CONCLUSION: Our results suggest that increased expression of defense genes is an early event in the progression of colorectal adenomas to carcinomas

    Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk of sporadic colorectal cancer (CRC) is mainly associated with lifestyle factors, particularly dietary factors. Diets high in red meat and fat and low in fruit and vegetables are associated with an increased risk of CRC. The dietary effects may be modulated by genetic polymorphisms in biotransformation genes. In this study we aimed to evaluate the role of dietary factors in combination with genetic factors in the different stages of colorectal carcinogenesis in a Norwegian population.</p> <p>Methods</p> <p>We used a case-control study design (234 carcinomas, 229 high-risk adenomas, 762 low-risk adenomas and 400 controls) to test the association between dietary factors (meat versus fruit, berries and vegetables) genetic polymorphisms in biotransformation genes (<it>GSTM1</it>, <it>GSTT1</it>, <it>GSTP1 </it>Ile<sup>105</sup>Val, <it>EPHX1 </it>Tyr<sup>113</sup>His and <it>EPHX1 </it>His<sup>139</sup>Arg), and risk of colorectal carcinomas and adenomas. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression.</p> <p>Results</p> <p>A higher ratio of total meat to total fruit, berry and vegetable intake was positively associated with both high and low-risk adenomas, with approximately twice the higher risk in the 2<sup>nd </sup>quartile compared to the lowest quartile. For the high-risk adenomas this positive association was more obvious for the common allele (Tyr allele) of the <it>EPHX1 </it>codon 113 polymorphism. An association was also observed for the <it>EPHX1 </it>codon 113 polymorphism in the low-risk adenomas, although not as obvious.</p> <p>Conclusion</p> <p>Although, the majority of the comparison groups are not significant, our results suggest an increased risk of colorectal adenomas in individuals for some of the higher ratios of total meat to total fruit, berry and vegetable intake. In addition the study supports the notion that the biotransformation enzymes GSTM1, GSTP1 and EPHX1 may modify the effect of dietary factors on the risk of developing colorectal carcinoma and adenoma.</p

    Association between cigarette smoking, <it>APC </it>mutations and the risk of developing sporadic colorectal adenomas and carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between colorectal cancer (CRC) and smoking has not been consistent. Incomplete smoking history and association to a specific subset of CRC tumors have been proposed as explanations. The adenomatous polyposis coli (<it>APC</it>) gene has been reported to have a "gatekeeper" function in the colonic mucosa.</p> <p>Methods</p> <p>To evaluate the hypothesis that cigarette smoking is associated with adenoma and carcinoma development and further to investigate whether this association is due to mutations in the <it>APC </it>gene, we used a study population consisting of 133 cases (45 adenomas and 88 carcinomas) and 334 controls. All tumors were sequenced in the mutation cluster region (MCR) of the <it>APC </it>gene. Cases and controls were drawn from a homogeneous cohort of Norwegian origin.</p> <p>Results</p> <p>The mutational spectra of the <it>APC </it>gene revealed no difference in frequencies of mutations in cases based on ever and never smoking status. An overall case-control association was detected for adenomas and "ever smoking" OR = 1.73 (95% CI 0.83–3.58). For CRC cases several smoking parameters for dose and duration were used. We detected an association for all smoking parameters and "duration of smoking > 30 years", yielded a statistically significant OR = 2.86 (1.06–7.7). When cases were divided based on <it>APC </it>truncation mutation status, an association was detected in adenomas without <it>APC </it>mutation in relation to "ever smoking", with an OR = 3.97 (1.26–12.51). For CRC cases without <it>APC </it>mutation "duration of smoking > 30 years", yielded a statistically significant OR = 4.06 (1.20–13.7). The smoking parameter "starting smoking ≥ 40 years ago" was only associated with CRC cases with <it>APC </it>mutations, OR = 2.0 (0.34–11.95). A case-case comparison revealed similar findings for this parameter, OR = 2.24 (0.73–6.86).</p> <p>Conclusion</p> <p>Our data suggest an association between smoking and adenoma and CRC development. This association was strongest for cases without <it>APC </it>truncation mutation. This may implicate other factors in development of these tumors. The association detected between smoking and CRC cases with <it>APC </it>mutation was in relationship to the smoking parameter "starting smoking ≥ 40 years ago", a time period long enough to proceed CRC initiation.</p
    corecore