128 research outputs found

    Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae

    Get PDF
    Eilers E, Talarico G, Hansson BS, Hilker M, Reinecke A. Sensing the underground – ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE. 2012;7(7): e41357.Introduction Below ground orientation in insects relies mainly on olfaction and taste. The economic impact of plant root feeding scarab beetle larvae gave rise to numerous phylogenetic and ecological studies. Detailed knowledge of the sensory capacities of these larvae is nevertheless lacking. Here, we present an atlas of the sensory organs on larval head appendages of Melolontha melolontha. Our ultrastructural and electrophysiological investigations allow annotation of functions to various sensory structures. Results Three out of 17 ascertained sensillum types have olfactory, and 7 gustatory function. These sensillum types are unevenly distributed between antennae and palps. The most prominent chemosensory organs are antennal pore plates that in total are innervated by approximately one thousand olfactory sensory neurons grouped into functional units of three-to-four. In contrast, only two olfactory sensory neurons innervate one sensillum basiconicum on each of the palps. Gustatory sensilla chaetica dominate the apices of all head appendages, while only the palps bear thermo-/hygroreceptors. Electrophysiological responses to CO2, an attractant for many root feeders, are exclusively observed in the antennae. Out of 54 relevant volatile compounds, various alcohols, acids, amines, esters, aldehydes, ketones and monoterpenes elicit responses in antennae and palps. All head appendages are characterized by distinct olfactory response profiles that are even enantiomer specific for some compounds. Conclusions Chemosensory capacities in M. melolontha larvae are as highly developed as in many adult insects. We interpret the functional sensory units underneath the antennal pore plates as cryptic sensilla placodea and suggest that these perceive a broad range of secondary plant metabolites together with CO2. Responses to olfactory stimulation of the labial and maxillary palps indicate that typical contact chemo-sensilla have a dual gustatory and olfactory function

    Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots

    Get PDF
    Eilers E, Pauls G, Rillig MC, Hansson BS, Hilker M, Reinecke A. Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots. Journal of Chemical Ecology. 2016;41(3):253-266.Most studies on rhizosphere chemicals are carried out in substrate-free set-ups or in artificial substrates using sampling methods that require an air flow and may thus cause disturbance to the rhizosphere. Our study aimed to develop a simplified and inexpensive system that allows analysis of rhizosphere chemicals at experimentally less disturbed conditions. We designed a mesocosm in which volatile rhizosphere chemicals were sampled passively (by diffusion) without air- and water flow on polydimethylsiloxane-(PDMS) tubes. Dandelion (Taraxacum sect. ruderalia) was used as model plant; roots were left undamaged. Fifteen volatiles were retrieved from the sorptive material by thermal desorption for analysis by gas chromatography/mass spectrometry (GC/MS). Furthermore, three sugars were collected from the rhizosphere substrate by aqueous extraction and derivatized prior to GC/MS analysis. In order to study how the quantity of detected rhizosphere compounds depends on the type of soil or substrate, we determined the matrix-dependent recovery of synthetic rhizosphere chemicals. Furthermore, we compared sorption of volatiles on PDMS tubes with and without direct contact to the substrate. The results show that the newly designed mesocosm is suitable for low-invasive extraction of volatile and non-volatile compounds from rhizospheres. We further highlight how strongly the type of substrate and contact of PDMS tubes to the substrate affect the detectability of compounds from rhizospheres

    Increased expression of endothelial lipase in symptomatic and unstable carotid plaques

    Get PDF
    The aim of this study was to evaluate endothelial lipase (EL) protein expression in advanced human carotid artery plaques (HCAP) with regard to plaque (in)stability and the incidence of symptoms. HCAP were collected from 66 patients undergoing carotid endarterectomy (CEA). The degree of plaque (in)stability was estimated by ultrasound and histology. In HCAP sections, EL expression was determined by immunostaining and the intensity was assessed on a semi-quantitative scale (low: <25%, high: >25% positive cells). Monocytes and macrophages in adjacent HCAP sections were stained with a CD163 specific antibody. High EL staining was more prevalent in histologically unstable plaques (in 33.3% of fibrous plaques, 50% of ulcerated non-complicated plaques and 79.2% of ulcerated complicated plaques; χ2 test, p = 0.004) and in the symptomatic group (70.8 vs. 42.9% in the asymptomatic group; χ2 test, p = 0.028). The majority of EL immunostaining was found in those HCAP regions exhibiting a strong CD163 immunostaining. EL in HCAP might be a marker and/or promoter of plaque instability and HCAP-related symptomatology

    Toll-Like Receptor-2 Mediates Diet and/or Pathogen Associated Atherosclerosis: Proteomic Findings

    Get PDF
    BACKGROUND. Accumulating evidence implicates a fundamental link between the immune system and atherosclerosis. Toll-like receptors are principal sensors of the innate immune system. Here we report an assessment of the role of the TLR2 pathway in atherosclerosis associated with a high-fat diet and/or bacteria in ApoE+/- mice. METHODS AND RESULTS. To explore the role of TLR2 in inflammation- and infection-associated atherosclerosis, 10 week-old ApoE+/--TLR2+/+, ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice were fed either a high fat diet or a regular chow diet. All mice were inoculated intravenously, once per week for 24 consecutive weeks, with 50 μl live Porphyromonas gingivalis (P.g) (107 CFU) or vehicle (normal saline). Animals were euthanized 24 weeks after the first inoculation. ApoE+/--TLR2+/+ mice showed a significant increase in atheromatous lesions in proximal aorta and aortic tree compared to ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice for all diet conditions. They also displayed profound changes in plaque composition, as evidenced by increased macrophage infiltration and apoptosis, increased lipid content, and decreased smooth muscle cell mass, all reflecting an unstable plaque phenotype. SAA levels from ApoE+/--TLR2+/+ mice were significantly higher than from ApoE+/--TLR2+/- and ApoE+/--TLR2-/- mice. Serum cytokine analysis revealed increased levels of pro-inflammatory cytokines in ApoE+/--TLR2+/+ mice compared to ApoE+/--TLR2+/- and TLR2-/- mice, irrespective of diet or bacterial challenge. ApoE+/--TLR2+/+ mice injected weekly for 24 weeks with FSL-1 (a TLR2 agonist) also demonstrated significant increases in atherosclerotic lesions, SAA and serum cytokine levels compared to ApoE+/--TLR2-/- mice under same treatment condition. Finally, mass-spectrometry (MALDI-TOF-MS) of aortic samples analyzed by 2-dimentional gel electrophoresis differential display, identified 6 proteins upregulated greater than 2-fold in ApoE+/--TLR2+/+ mice fed the high fat diet and inoculated with P.g compared to any other group. CONCLUSION. Genetic deficiency of TLR2 reduces diet- and/or pathogen-associated atherosclerosis in ApoE+/- mice, along with differences in plaque composition suggesting greater structural stability while TLR-2 ligand-specific activation triggers atherosclerosis. The present data offers new insights into the pathophysiological pathways involved in atherosclerosis and paves the way for new pharmacological interventions aimed at reducing atherosclerosis.National Heart, Lung, and Blood Institute (R01 HL076801
    corecore