2,038 research outputs found

    Abiotic Stress Mitigation: A Case Study from 21 Trials Using a Natural Organic Matter Based Biostimulant Across Multiple Geographies

    Get PDF
    Crop productivity and yields can be greatly diminished by abiotic stress events including drought, extreme temperatures, excess moisture, and saline irrigation water. Multiple stressors occurring simultaneously can further exacerbate the strain on plants. Various types of biostimulants have been shown to mitigate abiotic stress and here, the results of 21 trials on corn, wheat, soybean, and various high-value crops are discussed in the context of the abiotic stress that either occurred naturally or was experimentally induced. Treatments in these trials included stressed and non-stressed plants, as well as either an untreated control or grower standard fertilizer applications alone and in combination with a natural organic matter (NOM)-based biostimulant. While stressed plants suffered compared with non-stressed plants, the stressed plants receiving the NOM-based biostimulant were healthier and larger, as indicated by whole, root, and shoot weights and yields at harvest. Plant response was stronger when stress existed, but the biostimulant also led to healthier plants when no stress occurred. Positive results occurred for 20 of the 21 trials, indicating that biostimulants can effectively mitigate abiotic stress events regardless of the plant species tested or the growing conditions encountered, by increasing sap Brix, enzymatic activity, and nutrient use efficiency

    Characterization of Terrestrial Dissolved Organic Matter Fractionated by pH and Polarity and Their Biological Effects on Plant Growth

    Get PDF
    Background: Humic substances are ubiquitous in the environment, complex mixtures, and known to be beneficial to plant growth. To better understand and identify components responsible for plant growth stimulation, a terrestrial aquatic DOM sample was fractionated according to pH and polarity, obtaining acid-soluble and acid-insoluble portions, as well as acid-soluble hydrophobic and hydrophilic fractions using C18. The various fractions were characterized then evaluated for their biological effects on plant growth using bioassays with corn at two carbon rates. Results: Approximately 43% and 57% of the carbon, and 31% and 69% of the iron, was found in the acid-insoluble and acid-soluble fractions, respectively. Upon separating the acid-soluble portion using C18 extraction, about 64% and 36% of the carbon (and 96% and 4% of the iron) was present in the hydrophilic and hydrophobic fractions, respectively. The acid-insoluble portion was more aromatic and less oxygenated than the acid-soluble fraction. The hydrophilic filtrate was oxygen-rich and contained mostly tannin-like molecules, while the hydrophobic retentate was more aromatic and lignin-like. During bioassay testing, it was found that more hydrophilic samples (those that are more oxygenated) yielded the highest response for shoot measurements. For root measurements, the lower DOC rate (0.01 mg/L C) gave better results than the higher DOC rate (0.1 mg/L C). Also, the hydrophobic, less oxygenated acid-insoluble sample performed better than the more hydrophilic acid-soluble portion. The polarity fractions at the lower carbon application showed that larger root systems occurred when there was more hydrophobic C18 retentate material present. The opposite was true for the root system at the higher carbon application, where larger roots existed when more hydrophilic C18 filtrate material was present. Conclusions: Compositional differences were found when comparing the acid-soluble versus acid-insoluble portions and the hydrophobic versus hydrophilic C18 fractions, and activity with respect to plant stimulation was discerned. While a carbon rate affect was observed during foliar application to corn plants (with the lower carbon rate generally yielding the best biological stimulation), the various observed trends indicate that plant response is due to not only the amount of carbon present but also the type of carbon

    How do older people with sight loss manage their general health? A qualitative study

    Get PDF
    Purpose: Older people with sight loss experience a number of barriers to managing their health. The purpose of this qualitative study was to explore how older people with sight loss manage their general health and explore the techniques used and strategies employed for health management. Methods: Semi-structured face-to-face interviews were conducted with 30 participants. Interviews were audio-recorded, transcribed verbatim and analysed using thematic analysis. Results: Health management challenges experienced included: managing multiple health conditions; accessing information; engaging in health behaviours and maintaining wellbeing. Positive strategies included: joining support groups, clubs and societies; using low vision aids; seeking support from family and friends and accessing support through health and social care services. Conclusion: Healthcare professionals need to be more aware of the challenges faced by older people with sight loss. Improved promotion of group support and charity services which are best placed to share information, provide fora to learn about coping techniques and strategies, and give older people social support to prevent isolation is needed. Rehabilitation and support services and equipment can only be beneficial if patients know what is available and how to access them. Over-reliance on self-advocacy in current healthcare systems is not conducive to patient-centred care. Implications for Rehabilitation Sight loss in older people can impact on many factors including health management. This study identifies challenges to health management and highlights strategies used by older people with sight loss to manage their health. Access to support often relies on patients seeking information for themselves. However, self-advocacy is challenging due to information accessibility barriers. Informal groups and charities play an important role in educating patients about their condition and advising on available support to facilitate health management

    Cortical atrophy predicts visual performance in long-term central retinal disease; GCL, pRNFL and cortical thickness are key biomarkers

    Get PDF
    Purpose: The aim of this study was to assess both retinal and cortical structure in a cohort of patients with long-term acquired central retinal disease in order to identify potential disease biomarkers and to explore the relationship between the anterior and posterior visual pathways. Methods: Fourteen participants diagnosed with long-term central retinal disease underwent structural assessments of the retina using spectral-domain optical coherence tomography, including macular ganglion cell layer (GCL) and peripapillary retinal nerve fiber layer (pRNFL) thickness. Structural magnetic resonance imaging was used to measure visual cortex, including cortical volume of the entire occipital lobe and cortical thickness of the occipital pole and calcarine sulcus, representing the central and peripheral retina, respectively. Results: Mean thickness was significantly reduced in both the macular GCL and the inferior temporal pRNFL across patients. Cortical thickness was significantly reduced in both the occipital pole and calcarine sulcus, representing the central and peripheral retina, respectively. Disease duration significantly correlated with GCL thickness with a large effect size, whereas a medium effect size suggests the possibility that cortical thickness in the occipital pole may correlate with visual acuity. Conclusions: Long-term central retinal disease is associated with significant structural changes to both the retina and the brain. Exploratory analysis suggests that monitoring GCL thickness may be a sensitive biomarker of disease progression and reductions in visual cortical thickness may be associated with reduced visual acuity. Although this study is limited by its heterogeneous population, larger cohort studies would be needed to better establish some of the relationships detected between disease dependent structural properties of the anterior and posterior visual pathway given the effect sizes reported in our exploratory analysis

    Climate warming and elevated CO2 alter peatland soil carbon sources and stability

    Get PDF
    Peatlands are an important carbon (C) reservoir storing one-third of global soil organic carbon (SOC), but little is known about the fate of these C stocks under climate change. Here, we examine the impact of warming and elevated atmospheric CO2_{2} concentration (eCO2_{2}) on the molecular composition of SOC to infer SOC sources (microbe-, plant- and fire-derived) and stability in a boreal peatland. We show that while warming alone decreased plant- and microbe-derived SOC due to enhanced decomposition, warming combined with eCO2_{2} increased plant-derived SOC compounds. We further observed increasing root-derived inputs (suberin) and declining leaf/needle-derived inputs (cutin) into SOC under warming and eCO2_{2}. The decline in SOC compounds with warming and gains from new root-derived C under eCO2_{2}, suggest that warming and eCO2_{2} may shift peatland C budget towards pools with faster turnover. Together, our results indicate that climate change may increase inputs and enhance decomposition of SOC potentially destabilising C storage in peatlands

    Following the status of visual cortex over time in patients with macular degeneration reveals atrophy of visually deprived brain regions

    Get PDF
    Purpose: Previous research has shown atrophy of visual cortex can occur in retinotopic representations of retinal lesions resulting from eye disease. However, the time course of atrophy cannot be established from these cross-sectional studies, which included patients with long-standing disease of varying severity. Our aim therefore was to measure visual cortical structure over time in participants after onset of unilateral visual loss resulting from age-related macular degeneration (AMD). Methods: Inclusion criteria were onset of acute unilateral neovascular AMD with bilateral dry-AMD based on clinical examination. Therefore, substantial loss of unilateral visual input to cortex was relatively well-defined in time. Changes in cortical anatomy were assessed in the occipital lobe as a whole, and in cortical representations of the lesion and intact retina, the lesion and intact projection zones, respectively. Whole brain, T1-weighted MRI was taken at diagnosis (before anti-angiogenic treatment to stabilise the retina), during the 3-4-month initial treatment period, with a long-term follow-up ~5 (range 3.8 – 6.1 years) years later. Results: Significant cortical atrophy was detected at long-term follow-up only, with a reduction in mean cortical volume across the whole occipital lobe. Importantly, this reduction was explained by cortical thinning of the lesion projection zone, which suggests additional changes to those associated with normal ageing. Over the period of study, anti-angiogenic treatment stabilised visual acuity and central retinal thickness, suggesting that the atrophy detected was most likely governed by long-term decreased visual input. Conclusions: Our results indicate that consequences of eye disease on visual cortex are atrophic and retinotopic. Our work also raises the potential to follow the status of visual cortex in individuals over time to inform on how best to treat patients, particularly with restorative techniques

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Assessing the structure of the posterior visual pathway in bilateral macular degeneration

    Get PDF
    Abstract Macular degeneration (MD) embodies a collection of disorders causing a progressive loss of central vision. Cross-sectional MRI studies have revealed structural changes in the grey and white matter in the posterior visual pathway in MD but there remains a need to understand how such changes progress over time. To that end we assessed the posterior pathway, characterising the visual cortex and optic radiations over a ~ 2-year period in MD patients and controls. We performed cross-sectional and longitudinal analysis of the former. Reduced cortical thickness and white matter integrity were observed in patients compared to controls, replicating previous findings. While faster, neither the rate of thinning in visual cortex nor the reduction in white matter integrity during the ~ 2-year period reached significance. We also measured cortical myelin density; cross-sectional data showed this was higher in patients than controls, likely as a result of greater thinning of non-myelinated tissue in patients. However, we also found evidence of a greater rate of loss of myelin density in the occipital pole in the patient group indicating that the posterior visual pathway is at risk in established MD. Taken together, our results revealed a broad decline in grey and white matter in the posterior visual pathway in bilateral MD; cortical thickness and fractional anisotropy show hints of an accelerated rate of loss also, with larger effects emerging in the occipital pole
    corecore