61 research outputs found

    Towards an expert consensus to delineate a clinical syndrome of chronic breathlessness

    Get PDF
    Copyright ©ERS 2017. Breathlessness that persists despite treatment for the underlying conditions is debilitating. Identifying this discrete entity as a clinical syndrome should raise awareness amongst patients, clinicians, service providers, researchers and research funders.Using the Delphi method, questions and statements were generated via expert group consultations and one-to-one interviews (n=17). These were subsequently circulated in three survey rounds (n=34, n=25, n=31) to an extended international group from various settings (clinical and laboratory; hospital, hospice and community) and working within the basic sciences and clinical specialties. The a priori target agreement for each question was 70%. Findings were discussed at a multinational workshop.The agreed term, chronic breathlessness syndrome, was defined as breathlessness that persists despite optimal treatment of the underlying pathophysiology and that results in disability. A stated duration was not needed for "chronic". Key terms for French and German translation were also discussed and the need for further consensus recognised, especially with regard to cultural and linguistic interpretation.We propose criteria for chronic breathlessness syndrome. Recognition is an important first step to address the therapeutic nihilism that has pervaded this neglected symptom and could empower patients and caregivers, improve clinical care, focus research, and encourage wider uptake of available and emerging evidence-based interventions

    A fatal case of recurrent amiodarone-induced thyrotoxicosis after percutaneous tracheotomy: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amiodarone is a widely used antiarrythmic drug, which may produce secondary effects on the thyroid. In 14–18% of amiodarone-treated patients, there is overt thyroid dysfunction, usually in the form of amiodarone-induced thyrotoxicosis, which can be difficult to manage with standard medical treatment.</p> <p>Case presentation</p> <p>Presented is the case of a 65-year-old man, under chronic treatment of atrial fibrillation with amiodarone, who was admitted to the Intensive Care Unit with acute cardio-respiratory failure and fever. He was recently hospitalized with respiratory distress, attributed to amiodarone-induced pulmonary fibrosis. Clinical and laboratory investigation revealed thyrotoxicosis due to amiodarone treatment. He was begun on thionamide, prednisone and beta-blockers. After a short term improvement of his clinical status the patient underwent percutaneous tracheotomy due to weaning failure from mechanical ventilation, which led to the development of recurrent thyrotoxicosis, unresponsive to medical treatment. Finally, the patient developed multiple organ failure and died, seven days later.</p> <p>Conclusion</p> <p>We suggest that percutaneous tracheotomy could precipitate a thyrotoxic crisis, particularly in non-euthyroid patients suffering from concurrent severe illness and should be performed only in parallel with emergency thyroid surgery, when indicated.</p

    Digital clubbing in tuberculosis – relationship to HIV infection, extent of disease and hypoalbuminemia

    Get PDF
    BACKGROUND: Digital clubbing is a sign of chest disease known since the time of Hippocrates. Its association with tuberculosis (TB) has not been well studied, particularly in Africa where TB is common. The prevalence of clubbing in patients with pulmonary TB and its association with Human Immunodeficiency Virus (HIV), severity of disease, and nutritional status was assessed. METHODS: A cross-sectional study was carried out among patients with smear-positive TB recruited consecutively from the medical and TB wards and outpatient clinics at a public hospital in Uganda. The presence of clubbing was assessed by clinical signs and measurement of the ratio of the distal and inter-phalangeal diameters (DPD/IPD) of both index fingers. Clubbing was defined as a ratio > 1.0. Chest radiograph, serum albumin and HIV testing were done. RESULTS: Two hundred patients (82% HIV-infected) participated; 34% had clubbing by clinical criteria whilst 30% had clubbing based on DPD/IPD ratio. Smear grade, extensive or cavitary disease, early versus late HIV disease, and hypoalbuminemia were not associated with clubbing. Clubbing was more common among patients with a lower Karnofsky performance scale score or with prior TB. CONCLUSION: Clubbing occurs in up to one-third of Ugandan patients with pulmonary TB. Clubbing was not associated with stage of HIV infection, extensive disease or hypoalbuminemia

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients
    corecore