30,291 research outputs found
Design considerations for divers' breathing gas systems
Some of the design methods used to establish the gas storage, mixing, and transfer requirements for existing deep dive systems are discussed. Gas mixing systems appear essential to provide the low oxygen concentration mixtures within the converging tolerance range dictated by applications to increasing depths. Time related use of gas together with the performance of the gas transfer system insures a reasonable time frame for systems application
Applications of adenine nucleotide measurements in oceanography
The methodology involved in nucleotide measurements is outlined, along with data to support the premise that ATP concentrations in microbial cells can be extrapolated to biomass parameters. ATP concentrations in microorganisms and nucleotide analyses are studied
Development of moored oceanographic spectroradiometer
Biospherical Instruments has successfully completed a NASA sponsored SBIR (Small Business Innovational Research Program) project to develop spectroradiometers capable of being deployed in the ocean for long periods of time. The completion of this project adds a valuable tool for the calibration of future spaceborne ocean color sensors and enables oceanographers to extend remote sensing optical techniques beyond the intermittent coverage of spaceborne sensors. Highlights of the project include two moorings totalling 8 months generating extensive sets of optical, biological, and physical data sets in the ocean off La Jolla, California, and a 70 day operational deployment of the resulting commercial product by the ONR and NASA sponsored BIOWATT program. Based on experience gained in these moorings, Biospherical Instruments has developed a new line of spectroradiometers designed to support the oceanographic remote sensing missions of NASA, the Navy, and various oceanographers
Recommended from our members
The rise and fall of early oil field technology: The torsion balance gradiometer
Today elementary physics students take for granted such quantities as "big G," the universal gravitational constant. In fact in the late 1700s the value of this quantity was unknown, and the quest to determine it led to some of the earliest geophysical instrumentation. Just after the Revolutionary War in the United States, Cavendish developed the first system to measure the universal gravitational constant, the familiar "big G." Unfortunately, for geologists (at this time still mostly "gentlemen scientists"), this apparatus produced data which were difficult to interpret geologically, and it was far too large and cumbersome for field use. The geologic limitation was that the system only measured the horizontal derivative of a horizontal component of the gravity field, a quantity which by itself is difficult to interpret. Thus no applications of this elegant yet laboratory-bound instrument emerged
Recommended from our members
The rise and fall of early oil field technology: The torsion balance gradiometer
Today elementary physics students take for granted such quantities as "big G," the universal gravitational constant. In fact in the late 1700s the value of this quantity was unknown, and the quest to determine it led to some of the earliest geophysical instrumentation. Just after the Revolutionary War in the United States, Cavendish developed the first system to measure the universal gravitational constant, the familiar "big G." Unfortunately, for geologists (at this time still mostly "gentlemen scientists"), this apparatus produced data which were difficult to interpret geologically, and it was far too large and cumbersome for field use. The geologic limitation was that the system only measured the horizontal derivative of a horizontal component of the gravity field, a quantity which by itself is difficult to interpret. Thus no applications of this elegant yet laboratory-bound instrument emerged
Real-Time Data Processing in the Muon System of the D0 Detector
This paper presents a real-time application of the 16-bit fixed point Digital
Signal Processors (DSPs), in the Muon System of the D0 detector located at the
Fermilab Tevatron, presently the world's highest-energy hadron collider. As
part of the Upgrade for a run beginning in the year 2000, the system is
required to process data at an input event rate of 10 KHz without incurring
significant deadtime in readout. The ADSP21csp01 processor has high I/O
bandwidth, single cycle instruction execution and fast task switching support
to provide efficient multisignal processing. The processor's internal memory
consists of 4K words of Program Memory and 4K words of Data Memory. In addition
there is an external memory of 32K words for general event buffering and 16K
words of Dual Port Memory for input data queuing. This DSP fulfills the
requirement of the Muon subdetector systems for data readout. All error
handling, buffering, formatting and transferring of the data to the various
trigger levels of the data acquisition system is done in software. The
algorithms developed for the system complete these tasks in about 20
microseconds per event.Comment: 4 pages, Presented and published at the 11th IEEE NPSS Real Time
Conference, held at Santa Fe, New Mexico, USA, from June 14-18, 199
Pump-Enhanced Continuous-Wave Magnetometry using Nitrogen-Vacancy Ensembles
Ensembles of nitrogen-vacancy centers in diamond are a highly promising
platform for high-sensitivity magnetometry, whose efficacy is often based on
efficiently generating and monitoring magnetic-field dependent infrared
fluorescence. Here we report on an increased sensing efficiency with the use of
a 532-nm resonant confocal cavity and a microwave resonator antenna for
measuring the local magnetic noise density using the intrinsic nitrogen-vacancy
concentration of a chemical-vapor deposited single-crystal diamond. We measure
a near-shot-noise-limited magnetic noise floor of 200 pT/
spanning a bandwidth up to 159 Hz, and an extracted sensitivity of
approximately 3 nT/, with further enhancement limited by the
noise floor of the lock-in amplifier and the laser damage threshold of the
optical components. Exploration of the microwave and optical pump-rate
parameter space demonstrates a linewidth-narrowing regime reached by virtue of
using the optical cavity, allowing an enhanced sensitivity to be achieved,
despite an unoptimized collection efficiency of <2 %, and a low
nitrogen-vacancy concentration of about 0.2 ppb.Comment: 10 pages and 5 figure
Initial data for stationary space-times near space-like infinity
We study Cauchy initial data for asymptotically flat, stationary vacuum
space-times near space-like infinity. The fall-off behavior of the intrinsic
metric and the extrinsic curvature is characterized. We prove that they have an
analytic expansion in powers of a radial coordinate. The coefficients of the
expansion are analytic functions of the angles. This result allow us to fill a
gap in the proof found in the literature of the statement that all
asymptotically flat, vacuum stationary space-times admit an analytic
compactification at null infinity. Stationary initial data are physical
important and highly non-trivial examples of a large class of data with similar
regularity properties at space-like infinity, namely, initial data for which
the metric and the extrinsic curvature have asymptotic expansion in terms of
powers of a radial coordinate. We isolate the property of the stationary data
which is responsible for this kind of expansion.Comment: LaTeX 2e, no figures, 12 page
Atmospheric neutron measurements with the SONTRAC science model
–The SOlar Neutron TRACking (SONTRAC) telescope was originally developed to measure the energy spectrum and incident direction of neutrons produced in solar flares, in the energy range 20 - 250 MeV. While developed primarily for solar physics, the SONTRAC detector may be employed in virtually any application requiring both energy measurement and imaging capabilities. The SONTRAC Science Model (SM) is presently being operated at the University of New Hampshire (UNH) as a ground-based instrument to investigate the energy spectrum, zenith and azimuth angle dependence of the cosmic-ray induced sea-level atmospheric neutron flux. SONTRAC measurements are based on the non-relativistic double scatter of neutrons off ambient protons within a block of scintillating fibers. Using the n-p elastic double-scatter technique, it is possible to uniquely determine the neutron’s energy and direction on an event-by-event basis. The 3D SM consists of a cube of orthogonal plastic scintillating fiber layers with 5 cm sides, read out by two CCD cameras. Two orthogonal imaging chains allow full 3D reconstruction of scattered proton tracks
Decay rate measurement of the first vibrationally excited state of MgH in a cryogenic Paul trap
We present a method to measure the decay rate of the first excited
vibrational state of simple polar molecular ions being part of a Coulomb
crystal in a cryogenic linear Paul trap. Specifically, we have monitored the
decay of the == towards the ==
level in MgH by saturated laser excitation of the ==-== transition followed by state selective
resonance enhanced two-photon dissociation out of the == level. The technique enables the determination of decay rates, and
thus absorption strengths, with an accuracy at the few percent level.Comment: 5 pages, 4 figure
- …