1,905 research outputs found

    Bayesian estimation of genetic parameters for multivariate threshold and continuous phenotypes and molecular genetic data in simulated horse populations using Gibbs sampling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Requirements for successful implementation of multivariate animal threshold models including phenotypic and genotypic information are not known yet. Here simulated horse data were used to investigate the properties of multivariate estimators of genetic parameters for categorical, continuous and molecular genetic data in the context of important radiological health traits using mixed linear-threshold animal models via Gibbs sampling. The simulated pedigree comprised 7 generations and 40000 animals per generation. Additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits were simulated, resembling situations encountered in the Warmblood horse. Quantitative trait locus (QTL) effects and genetic marker information were simulated for one of the liabilities. Different scenarios with respect to recombination rate between genetic markers and QTL and polymorphism information content of genetic markers were studied. For each scenario ten replicates were sampled from the simulated population, and within each replicate six different datasets differing in number and distribution of animals with trait records and availability of genetic marker information were generated. (Co)Variance components were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. Residual variances were fixed to zero and a proper prior was used for the genetic covariance matrix.</p> <p>Results</p> <p>Effective sample sizes (ESS) and biases of genetic parameters differed significantly between datasets. Bias of heritability estimates was -6% to +6% for the continuous trait, -6% to +10% for the binary traits of moderate heritability, and -21% to +25% for the binary traits of low heritability. Additive genetic correlations were mostly underestimated between the continuous trait and binary traits of low heritability, under- or overestimated between the continuous trait and binary traits of moderate heritability, and overestimated between two binary traits. Use of trait information on two subsequent generations of animals increased ESS and reduced bias of parameter estimates more than mere increase of the number of informative animals from one generation. Consideration of genotype information as a fixed effect in the model resulted in overestimation of polygenic heritability of the QTL trait, but increased accuracy of estimated additive genetic correlations of the QTL trait.</p> <p>Conclusion</p> <p>Combined use of phenotype and genotype information on parents and offspring will help to identify agonistic and antagonistic genetic correlations between traits of interests, facilitating design of effective multiple trait selection schemes.</p

    A new set of integrals of motion to propagate the perturbed two-body problem

    Full text link
    A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131?150,2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez?s method for near-circular motion under the J2 perturbation is transformed into linear.Moreover, themethod reveals to be competitive with two very popular elementmethods derived from theKustaanheimo-Stiefel and Sperling-Burdet regularizations

    Genetic predisposition to adiposity is associated with increased objectively assessed sedentary time in young children.

    Get PDF
    Increased sedentariness has been linked to the growing prevalence of obesity in children, but some longitudinal studies suggest that sedentariness may be a consequence rather than a cause of increased adiposity. We used Mendelian randomization to examine the causal relations between body mass index (BMI) and objectively assessed sedentary time and physical activity in 3-8 year-old children from one Finnish and two Danish cohorts [NTOTAL=679]. A genetic risk score (GRS) comprised of 15 independent genetic variants associated with childhood BMI was used as the instrumental variable to test causal effects of BMI on sedentary time, total physical activity, and moderate-to-vigorous physical activity (MVPA). In fixed effects meta-analyses, the GRS was associated with 0.05 SD/allele increase in sedentary time (P=0.019), but there was no significant association with total physical activity (beta=0.011 SD/allele, P=0.58) or MVPA (beta=0.001 SD/allele, P=0.96), adjusting for age, sex, monitor wear-time and first three genome-wide principal components. In two-stage least squares regression analyses, each genetically instrumented one unit increase in BMI z-score increased sedentary time by 0.47 SD (P=0.072). Childhood BMI may have a causal influence on sedentary time but not on total physical activity or MVPA in young children. Our results provide important insights into the regulation of movement behaviour in childhood

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Involvement of a Natural Fusion of a Cytochrome P450 and a Hydrolase in Mycophenolic Acid Biosynthesis

    Get PDF
    Mycophenolic acid (MPA) is a fungal secondary metabolite and the active component in several immunosuppressive pharmaceuticals. The gene cluster coding for the MPA biosynthetic pathway has recently been discovered in Penicillium brevicompactum, demonstrating that the first step is catalyzed by MpaC, a polyketide synthase producing 5-methylorsellinic acid (5-MOA). However, the biochemical role of the enzymes encoded by the remaining genes in the MPA gene cluster is still unknown. Based on bioinformatic analysis of the MPA gene cluster, we hypothesized that the step following 5-MOA production in the pathway is carried out by a natural fusion enzyme MpaDE, consisting of a cytochrome P450 (MpaD) in the N-terminal region and a hydrolase (MpaE) in the C-terminal region. We verified that the fusion gene is indeed expressed in P. brevicompactum by obtaining full-length sequence of the mpaDE cDNA prepared from the extracted RNA. Heterologous coexpression of mpaC and the fusion gene mpaDE in the MPA-nonproducer Aspergillus nidulans resulted in the production of 5,7-dihydroxy-4-methylphthalide (DHMP), the second intermediate in MPA biosynthesis. Analysis of the strain coexpressing mpaC and the mpaD part of mpaDE shows that the P450 catalyzes hydroxylation of 5-MOA to 4,6-dihydroxy-2-(hydroxymethyl)-3-methylbenzoic acid (DHMB). DHMB is then converted to DHMP, and our results suggest that the hydrolase domain aids this second step by acting as a lactone synthase that catalyzes the ring closure. Overall, the chimeric enzyme MpaDE provides insight into the genetic organization of the MPA biosynthesis pathway

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation

    Get PDF
    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can enhance high precipitation gradients, leading to a systematic absence of long-range patterns

    Teaching Medicine to Non-English Speaking Background Learners in a Foreign Country

    Get PDF
    Teaching abroad exposes medical educators to unfamiliar teaching methods and learning styles that can enhance their overall teaching repertoire. Based on the author’s experience teaching residents for one month at a community hospital in Japan and a review of the non-English speaking background (NESB) educational literature, pedagogical principles and lessons for successful international NESB instruction are outlined. These methods include understanding the dissimilar linguistic, cultural, and academic backgrounds of the learners, emphasizing pace and clarity of speech, presenting a conceptual framework instead of detailed discourse on subjects, and regular visual reinforcement of spoken words. The limitations introduced by the language barrier and the use of interpreters are briefly discussed. As society and institutions of higher learning become more global and multicultural, clinician–educators may benefit from teaching in other countries in order to enhance their teaching skills with NESB learners, both abroad and in their own institutions
    • …
    corecore