63,443 research outputs found
Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction
© 2016 The AuthorsDislocations in geological minerals are fundamental to the creep processes that control large-scale geodynamic phenomena. However, techniques to quantify their densities, distributions, and types over critical subgrain to polycrystal length scales are limited. The recent advent of high-angular resolution electron backscatter diffraction (HR-EBSD), based on diffraction pattern cross-correlation, offers a powerful new approach that has been utilised to analyse dislocation densities in the materials sciences. In particular, HR-EBSD yields significantly better angular resolution (<0.01°) than conventional EBSD (~0.5°), allowing very low dislocation densities to be analysed. We develop the application of HR-EBSD to olivine, the dominant mineral in Earths upper mantle by testing (1) different inversion methods for estimating geometrically necessary dislocation (GND) densities, (2) the sensitivity of the method under a range of data acquisition settings, and (3) the ability of the technique to resolve a variety of olivine dislocation structures. The relatively low crystal symmetry (orthorhombic) and few slip systems in olivine result in well constrained GND density estimates. The GND density noise floor is inversely proportional to map step size, such that datasets can be optimised for analysing either short wavelength, high density structures (e.g. subgrain boundaries) or long wavelength, low amplitude orientation gradients. Comparison to conventional images of decorated dislocations demonstrates that HR-EBSD can characterise the dislocation distribution and reveal additional structure not captured by the decoration technique. HR-EBSD therefore provides a highly effective method for analysing dislocations in olivine and determining their role in accommodating macroscopic deformation
Massive sterile neutrinos as warm Dark Matter
We show that massive sterile neutrinos mixed with the ordinary ones may be
produced in the early universe in the right amount to be natural warm dark
matter particles. Their mass should be below 40 keV and the corresponding
mixing angles sin^2 2\theta > 10^{-11} for mixing with \nu_\mu or \nu_\tau,
while mixing with \nu_e is slightly stronger bounded with mass less than 30
keV.Comment: 13 pages, 1 figure, references and acknowledgement added; discussion
on SN bound updated, matches version in Astropart.phy
Ka-band (32 GHz) benefits to planned missions
The benefits of using 32 GHz downlinks for a set of deep space missions, as well as the implications to radio science and the Deep Space Network (DSN) are documented. The basic comparison is between the use of the current X-band (8.4 GHz) and a 32 GHZ (Ka-band) downlink. There was shown to be approximately an 8 dB (about 600%) link advantage for 32 GHz. This 8 dB advantage would be able to either reduce mission cost or improve mission science return. Included here are studies on how the 8 dB advantage would be used for the Cassini and Mars Sample Return missions. While the work is preliminary, it shows that the 8 dB advantage can be exploited to provide large benefits to future deep space missions. There can be significant mass and/or power savings to the spacecraft, which can translate into cost savings. Alternatively, the increased downlink telecommunications performance can provide a greater science return
Spectral distortion of cosmic background radiation by scattering on hot electrons. Exact calculations
The spectral distortion of the cosmic background radiation produced by the
inverse Compton scattering on hot electrons in clusters of galaxies (thermal
Sunyaev-Zeldovich effect) is calculated for arbitrary optical depth and
electron temperature. The distortion is found by a numerical solution of the
exact Boltzmann equation for the photon distribution function. In the limit of
small optical depth and low electron temperature our results confirm the
previous analyses. In the opposite limits, our method is the only one that
permits to make accurate calculations.Comment: 18 pages, 7 figures, to be published in Ap
A new approach for efficient simulation of Coulomb interactions in ionic fluids
We propose a simplified version of local molecular field (LMF) theory to
treat Coulomb interactions in simulations of ionic fluids. LMF theory relies on
splitting the Coulomb potential into a short-ranged part that combines with
other short-ranged core interactions and is simulated explicitly. The averaged
effects of the remaining long-ranged part are taken into account through a
self-consistently determined effective external field. The theory contains an
adjustable length parameter sigma that specifies the cut-off distance for the
short-ranged interaction. This can be chosen to minimize the errors resulting
from the mean-field treatment of the complementary long-ranged part. Here we
suggest that in many cases an accurate approximation to the effective field can
be obtained directly from the equilibrium charge density given by the Debye
theory of screening, thus eliminating the need for a self-consistent treatment.
In the limit sigma -> 0, this assumption reduces to the classical Debye
approximation. We examine the numerical performance of this approximation for a
simple model of a symmetric ionic mixture. Our results for thermodynamic and
structural properties of uniform ionic mixtures agree well with similar results
of Ewald simulations of the full ionic system. In addition we have used the
simplified theory in a grand-canonical simulation of a nonuniform ionic mixture
where an ion has been fixed at the origin. Simulations using short-ranged
truncations of the Coulomb interactions alone do not satisfy the exact
condition of complete screening of the fixed ion, but this condition is
recovered when the effective field is taken into account. We argue that this
simplified approach can also be used in the simulations of more complex
nonuniform systems.Comment: To be published in Journal of Chemical Physic
Inequalities for quantum skew information
We study quantum information inequalities and show that the basic inequality
between the quantum variance and the metric adjusted skew information generates
all the multi-operator matrix inequalities or Robertson type determinant
inequalities studied by a number of authors. We introduce an order relation on
the set of functions representing quantum Fisher information that renders the
set into a lattice with an involution. This order structure generates new
inequalities for the metric adjusted skew informations. In particular, the
Wigner-Yanase skew information is the maximal skew information with respect to
this order structure in the set of Wigner-Yanase-Dyson skew informations.
Key words and phrases: Quantum covariance, metric adjusted skew information,
Robertson-type uncertainty principle, operator monotone function,
Wigner-Yanase-Dyson skew information
Lattice model for cold and warm swelling of polymers in water
We define a lattice model for the interaction of a polymer with water. We
solve the model in a suitable approximation. In the case of a non-polar
homopolymer, for reasonable values of the parameters, the polymer is found in a
non-compact conformation at low temperature; as the temperature grows, there is
a sharp transition towards a compact state, then, at higher temperatures, the
polymer swells again. This behaviour closely reminds that of proteins, that are
unfolded at both low and high temperatures.Comment: REVTeX, 5 pages, 2 EPS figure
A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer
A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz)
Analytical Rescaling of Polymer Dynamics from Mesoscale Simulations
We present a theoretical approach to scale the artificially fast dynamics of
simulated coarse-grained polymer liquids down to its realistic value. As
coarse-graining affects entropy and dissipation, two factors enter the
rescaling: inclusion of intramolecular vibrational degrees of freedom, and
rescaling of the friction coefficient. Because our approach is analytical, it
is general and transferable. Translational and rotational diffusion of
unentangled and entangled polyethylene melts, predicted from mesoscale
simulations of coarse-grained polymer melts using our rescaling procedure, are
in quantitative agreement with united atom simulations and with experiments.Comment: 6 pages, 2 figures, 2 table
- …