We present a theoretical approach to scale the artificially fast dynamics of
simulated coarse-grained polymer liquids down to its realistic value. As
coarse-graining affects entropy and dissipation, two factors enter the
rescaling: inclusion of intramolecular vibrational degrees of freedom, and
rescaling of the friction coefficient. Because our approach is analytical, it
is general and transferable. Translational and rotational diffusion of
unentangled and entangled polyethylene melts, predicted from mesoscale
simulations of coarse-grained polymer melts using our rescaling procedure, are
in quantitative agreement with united atom simulations and with experiments.Comment: 6 pages, 2 figures, 2 table