2,590 research outputs found

    Session 12: \u3cem\u3eAnalysis of State and Parameter Estimation Techniques using Dynamic Perturbation Signals\u3c/em\u3e

    Get PDF
    The trend in electric power systems is the displacement of traditional synchronous generation (e.g., coal, natural gas) with renewable energy resources (e.g., wind, solar photovoltaic) and battery energy storage. These energy resources require power electronic converters (PECs) to interconnect to the grid and have different response characteristics and dynamic stability issues compared to conventional synchronous generators. As a result, there is a need for validated models to study and mitigate PEC-based stability issues, especially for converter dominated power systems (e.g., island power systems, remote microgrids). This presentation will introduce methods related to dynamic state and parameter estimation via the design of active perturbation signals for converter dominated power systems

    The R-Process Alliance: A Comprehensive Abundance Analysis of HD 222925, a Metal-Poor Star with an Extreme R-Process Enhancement of [Eu/H] = -0.14

    Full text link
    We present a detailed abundance analysis of the bright (V = 9.02), metal-poor ([Fe/H] = -1.47 +/- 0.08) field red horizontal-branch star HD 222925, which was observed as part of an ongoing survey by the R-Process Alliance. We calculate stellar parameters and derive abundances for 46 elements based on 901 lines examined in a high-resolution optical spectrum obtained using the Magellan Inamori Kyocera Echelle spectrograph. We detect 28 elements with 38 <= Z <= 90; their abundance pattern is a close match to the Solar r-process component. The distinguishing characteristic of HD 222925 is an extreme enhancement of r-process elements ([Eu/Fe] = +1.33 +/- 0.08, [Ba/Eu] = -0.78 +/- 0.10) in a moderately metal-poor star, so the abundance of r-process elements is the highest ([Eu/H] = -0.14 +/- 0.09) in any known r-process-enhanced star. The abundance ratios among lighter (Z <= 30) elements are typical for metal-poor stars, indicating that production of these elements was dominated by normal Type II supernovae, with no discernible contributions from Type Ia supernovae or asymptotic giant branch stars. The chemical and kinematic properties of HD 222925 suggest it formed in a low-mass dwarf galaxy, which was enriched by a high-yield r-process event before being disrupted by interaction with the Milky Way.Comment: Accepted for publication in the Astrophysical Journal (17 pages, 4 figures, 3 tables

    Optimizing Grid Resilience: A Capacity Reserve Market for High Impact Low Probability Events

    Full text link
    This paper addresses the challenges of high-impact low-probability (HILP) events by proposing a novel capacity reserve event market for mobile generation assets, aimed at supporting the transmission network during such incidents. Despite the usefulness of portable generators and mobile energy units in restoring power, there are drawbacks such as environmental impact, finite operation, and complex cost recovery. The proposed market integrates these resources into a dispatch framework based on pre-established contracts, ensuring fair compensation and considering factors like capacity, pricing, and travel distance. Resource owners receive advanced notifications for potential events, allowing them to adjust their bids for cost recovery. Simulations on an IEEE 30-bus case have been conducted to demonstrate the model effectiveness in increasing grid resiliency

    Functional plasticity in the type IV secretion system of Helicobacter pylori.

    Get PDF
    Helicobacter pylori causes clinical disease primarily in those individuals infected with a strain that carries the cytotoxin associated gene pathogenicity island (cagPAI). The cagPAI encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into epithelial cells and is required for induction of the pro-inflammatory cytokine, interleukin-8 (IL-8). CagY is an essential component of the H. pylori T4SS that has an unusual sequence structure, in which an extraordinary number of direct DNA repeats is predicted to cause rearrangements that invariably yield in-frame insertions or deletions. Here we demonstrate in murine and non-human primate models that immune-driven host selection of rearrangements in CagY is sufficient to cause gain or loss of function in the H. pylori T4SS. We propose that CagY functions as a sort of molecular switch or perhaps a rheostat that alters the function of the T4SS and "tunes" the host inflammatory response so as to maximize persistent infection

    Observational Constraints on First-Star Nucleosynthesis. I. Evidence for Multiple Progenitors of CEMP-no Stars

    Get PDF
    We investigate anew the distribution of absolute carbon abundance, AA(C) =logϵ= \log\,\epsilon (C), for carbon-enhanced metal-poor (CEMP) stars in the halo of the Milky Way, based on high-resolution spectroscopic data for a total sample of 305 CEMP stars. The sample includes 147 CEMP-ss (and CEMP-r/s) stars, 127 CEMP-no stars, and 31 CEMP stars that are unclassified, based on the currently employed [Ba/Fe] criterion. We confirm previous claims that the distribution of AA(C) for CEMP stars is (at least) bimodal, with newly determined peaks centered on AA(C)=7.96=7.96 (the high-C region) and AA(C)=6.28 =6.28 (the low-C region). A very high fraction of CEMP-ss (and CEMP-r/s) stars belong to the high-C region, while the great majority of CEMP-no stars reside in the low-C region. However, there exists complexity in the morphology of the AA(C)-[Fe/H] space for the CEMP-no stars, a first indication that more than one class of first-generation stellar progenitors may be required to account for their observed abundances. The two groups of CEMP-no stars we identify exhibit clearly different locations in the AA(Na)-AA(C) and AA(Mg)-AA(C) spaces, also suggesting multiple progenitors. The clear distinction in AA(C) between the CEMP-ss (and CEMP-r/sr/s) stars and the CEMP-no stars appears to be $as\ successful,and, and likely\ more\ astrophysically\ fundamental$, for the separation of these sub-classes as the previously recommended criterion based on [Ba/Fe] (and [Ba/Eu]) abundance ratios. This result opens the window for its application to present and future large-scale low- and medium-resolution spectroscopic surveys.Comment: 26pages, 7 figures, and 3 Tables ; Accepted for publication in ApJ; added more data and corrected minor inconsistencies existed in the compiled data of the previous studie

    The Nuclear Ionized Gas in the Radio Galaxy M84 (NGC 4374)

    Full text link
    We present optical images of the nucleus of the nearby radio galaxy M84 (NGC 4374 = 3C272.1) obtained with the Wide Field/Planetary Camera 2 (WFPC2) aboard the Hubble Space Telescope (HST). Our three images cover the Hα\alpha + [N II] emission lines as well as the V and I continuum bands. Analysis of these images confirms that the Hα\alpha + [N II] emission in the central 5'' (410 pc) is elongated along position angle (P.A.) \approx 72\arcdeg, which is roughly parallel to two nuclear dust lanes.Our high-resolution images reveal that the Hα\alpha + [N II] emission has three components, namely a nuclear gas disk,an `ionization cone', and outer filaments. The nuclear disk of ionized gas has diameter 1=82\approx 1'' = 82 pc and major axis P.A. \approx 58\arcdeg \pm 6\arcdeg. On an angular scale of 0\farcs5, the major axis of this nuclear gas disk is consistent with that of the dust. However, the minor axis of the gas disk (P.A. \approx 148\arcdeg) is tilted with respect to that of the filamentary Hα\alpha + [N II] emission at distances > 2'' from the nucleus; the minor axis of this larger scale gas is roughly aligned with the axis of the kpc-scale radio jets (P.A. \approx 170\arcdeg). The ionization cone (whose apex is offset by \approx 0\farcs3 south of the nucleus) extends 2'' from the nucleus along the axis of the southern radio jet. This feature is similar to the ionization cones seen in some Seyfert nuclei, which are also aligned with the radio axes.Comment: 11 pages plus 4 figure

    Virtual Inertia: Current Trends and Future Directions

    Get PDF
    The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs) like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems

    A modeling case for high atmospheric oxygen concentrations during the Mesozoic and Cenozoic

    Get PDF
    Changes in atmospheric oxygen concentration over Earth history are commonly related to the evolution of animals and plants. But there is no direct geochemical proxy for O2 levels, meaning that estimations rely heavily on modeling approaches. The results of such studies differ greatly, to the extent that today's atmospheric mixing ratio of 21% might be either the highest or lowest level during the past 200 m.y. Long-term oxygen sources, such as the burial in sediments of reduced carbon and sulfur species, are calculated in models by representation of nutrient cycling and estimation of productivity, or by isotope mass balance (IMB)—a technique in which burial rates are inferred in order to match known isotope records. Studies utilizing these different techniques produce conflicting estimates for paleoatmospheric O2, with nutrient-weathering models estimating concentrations close to, or above, that of the present day, and IMB models estimating low O2, especially during the Mesozoic. Here we re-assess the IMB technique using the COPSE biogeochemical model. IMB modelling is confirmed to be highly sensitive to assumed carbonate δ13C, and when this input is defined following recent compilations, predicted O2 is significantly higher and in reasonable agreement with that of non-IMB techniques. We conclude that there is no model-based support for low atmospheric oxygen concentrations during the past 200 m.y. High Mesozoic O2 is consistent with wildfire records and the development of plant fire adaptions, but links between O2 and mammal evolution appear more tenuous

    The R-Process Alliance: Chemical Abundances for a Trio of R-Process-Enhanced Stars -- One Strong, One Moderate, One Mild

    Full text link
    We present detailed chemical abundances of three new bright (V ~ 11), extremely metal-poor ([Fe/H] ~ -3.0), r-process-enhanced halo red giants based on high-resolution, high-S/N Magellan/MIKE spectra. We measured abundances for 20-25 neutron-capture elements in each of our stars. J1432-4125 is among the most r-process rich r-II stars, with [Eu/Fe]= +1.44+-0.11. J2005-3057 is an r-I star with [Eu/Fe] = +0.94+-0.07. J0858-0809 has [Eu/Fe] = +0.23+-0.05 and exhibits a carbon abundance corrected for evolutionary status of [C/Fe]_corr = +0.76, thus adding to the small number of known carbon-enhanced r-process stars. All three stars show remarkable agreement with the scaled solar r-process pattern for elements above Ba, consistent with enrichment of the birth gas cloud by a neutron star merger. The abundances for Sr, Y, and Zr, however, deviate from the scaled solar pattern. This indicates that more than one distinct r-process site might be responsible for the observed neutron-capture element abundance pattern. Thorium was detected in J1432-4125 and J2005-3057. Age estimates for J1432-4125 and J2005-3057 were adopted from one of two sets of initial production ratios each by assuming the stars are old. This yielded individual ages of 12+-6 Gyr and 10+-6 Gyr, respectively.Comment: 30 pages, includes a long table, 5 figure
    corecore