2,752 research outputs found

    Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

    Full text link
    Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger to analyze the effect of heat load and cryogenic supply parameters.Comment: 8 pp. Cryogenic Engineering Conference and International Cryogenic Materials Conference CEC-ICMC, 13-17 June 2011, Spokane, Washingto

    Stability of the iterative solutions of integral equations as one phase freezing criterion

    Full text link
    A recently proposed connection between the threshold for the stability of the iterative solution of integral equations for the pair correlation functions of a classical fluid and the structural instability of the corresponding real fluid is carefully analyzed. Direct calculation of the Lyapunov exponent of the standard iterative solution of HNC and PY integral equations for the 1D hard rods fluid shows the same behavior observed in 3D systems. Since no phase transition is allowed in such 1D system, our analysis shows that the proposed one phase criterion, at least in this case, fails. We argue that the observed proximity between the numerical and the structural instability in 3D originates from the enhanced structure present in the fluid but, in view of the arbitrary dependence on the iteration scheme, it seems uneasy to relate the numerical stability analysis to a robust one-phase criterion for predicting a thermodynamic phase transition.Comment: 11 pages, 2 figure

    The Thermal Explosion Synthesis of AlNi Monitored by Neutron Thermodiffractometry

    Get PDF
    The synthesis of AlNi from thermally activated equimolar powder mixtures of aluminium and nickel was monitored in situ and acquired diffraction patterns every 2 s or less. The analysis of diffraction patterns permitted establishment of its kinetics, which could be modeled according to an equation expressed as kt=[α/(1-α)]3/2. From 1530 to an activation energy of 9 ± 2 kJ mol−1 was estimated. Also, the crystallite size evolution on cooling was established to vary from ≈14 nm at 1530 °C to ≈28 nm at 180 °C. Finally, the reaction was found to occur through the melting of aluminium and the subsequent dissolving of nickel to form the polycrystalline single-phase product, AlNi

    Atomic force microscopy measurements of topography and friction on dotriacontane films adsorbed on a SiO2 surface

    Get PDF
    doi:10.1063/1.2060707 (8 pages)We report comprehensive atomic force microscopy (AFM) measurements at room temperature of the nanoscale topography and lateral friction on the surface of thin solid films of an intermediate-length normal alkane, dotriacontane (n-C32H66), adsorbed onto a SiO2 surface. Our topographic and frictional images, recorded simultaneously in the contact mode, reveal a multilayer structure in which one to two layers of molecules adsorb adjacent to the SiO2 surface oriented with their long axis parallel to the interface followed by partial layers of molecules oriented perpendicular to the surface. The thicknesses of the parallel and perpendicular layers that we measured with the AFM agree with those inferred from previous x-ray specular reflectivity measurements on similarly prepared samples. We also observe bulk dotriacontane particles and, in contrast with our previous measurements, are able to determine their location. Above a minimum size, the bulk particles are separated from islands of perpendicularly oriented molecules by regions of exposed parallel layers that most likely extend underneath the particles. We find that the lateral friction is sensitive to the molecular orientation in the underlying crystalline film and can be used effectively with topographic measurements to resolve uncertainties in the film structure. We measure the same lateral friction on top of the bulk particles as on the perpendicular layers, a value that is about 2.5 times smaller than on a parallel layer. Scans on top of parallel layers indicate a constant height but reveal domains having different sublevels of friction. We explain this by the domains having different azimuthal orientations of the molecules.This work was supported by U.S. National Science Foundation under Grant Nos. DMR-0109057 and DMR-0411748, by the Chilean government under FONDECYTGrant Nos. 1010548 and 7010548, and by the Fundacion Andes Grant No. C-13768

    Resonant Absorption as Mode Conversion?

    Full text link
    Resonant absorption and mode conversion are both extensively studied mechanisms for wave "absorption" in solar magnetohydrodynamics (MHD). But are they really distinct? We re-examine a well-known simple resonant absorption model in a cold MHD plasma that places the resonance inside an evanescent region. The normal mode solutions display the standard singular resonant features. However, these same normal modes may be used to construct a ray bundle which very clearly undergoes mode conversion to an Alfv\'en wave with no singularities. We therefore conclude that resonant absorption and mode conversion are in fact the same thing, at least for this model problem. The prime distinguishing characteristic that determines which of the two descriptions is most natural in a given circumstance is whether the converted wave can provide a net escape of energy from the conversion/absorption region of physical space. If it cannot, it is forced to run away in wavenumber space instead, thereby generating the arbitrarily small scales in situ that we recognize as fundamental to resonant absorption and phase mixing. On the other hand, if the converted wave takes net energy way, singularities do not develop, though phase mixing may still develop with distance as the wave recedes.Comment: 23 pages, 8 figures, 2 tables; accepted by Solar Phys (July 9 2010

    Arachidonic acid, arachidonic/eicosapentaenoic acid ratio, stearidonic acid and eicosanoids are involved in dietary-induced albinism in Senegal sole (Solea senegalensis)

    Get PDF
    Senegal sole larvae were fed live prey enriched with different amounts of arachidonic acid (ARA, 20:4n-6) and eicosapentaenoic acid (EPA, 20:5n-3) to re-evaluate the effect of these two fatty acids on flatfish pigmentation. Echium oil, a plant derived oil rich in gamma-linolenic acid (GLA, 18:3n-6) and stearidonic acid (SDA, 18:4n-3) was also used as a component of one of the enrichment emulsions. Although ARA content did not have any effect on growth there was a clear influence on pigmentation that correlated clearly with prostaglandin production. Inclusion of Echium oil, on the contrary, exerted a positive effect on pigmentation rate even though dietary ARA levels were as high as in the other emulsions. The relationships between dietary ARA levels and dietary ARA/EPA ratio, prostaglandin production and pigmentation are discussed

    Phase transitions in a ferrofluid at magnetic field induced microphase separation

    Full text link
    In the presence of a magnetic field applied perpendicular to a thin sample layer, a suspension of magnetic colloidal particles (ferrofluid) can form spatially modulated phases with a characteristic length determined by the competition between dipolar forces and short-range forces opposing density variations. We introduce models for thin-film ferrofluids in which magnetization and particle density are viewed as independent variables and in which the non-magnetic properties of the colloidal particles are described either by a lattice-gas entropy or by the Carnahan-Starling free energy. Our description is particularly well suited to the low-particle density regions studied in many experiments. Within mean-field theory, we find isotropic, hexagonal and stripe phases, separated in general by first-order phase boundaries.Comment: 12 pages, RevTex, to appear in PR

    Variational theory for a single polyelectrolyte chain revisited

    Full text link
    We reconsider the electrostatic contribution to the persistence length, e\ell_e, of a single, infinitely long charged polymer in the presence of screening. A Gaussian variational method is employed, taking e\ell_e as the only variational parameter. For weakly charged and flexible chains, crumpling occurs at small length scales because conformational fluctuations overcome electrostatic repulsion. The electrostatic persistence length depends on the square of the screening length, eκ2\ell_e\sim\kappa^{-2}, as first argued by Khokhlov and Khachaturian by applying the Odijk-Skolnick-Fixman (OSF) theory to a string of crumpled blobs. We compare our approach to previous theoretical works (including variational formulations) and show that the result eκ1\ell_e\sim\kappa^{-1} found by several authors comes from the improper use of a cutoff at small length scales. For highly charged and stiff chains, crumpling does not occur; here we recover the OSF result and validate the perturbative calculation for slightly bent rods.Comment: 11 pages, 6 figure

    Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels

    Full text link
    Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectrolyte solutions are calculated via second-order perturbation (linear response) theory. By modelling the macroions as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The counterions are found to penetrate stars more easily than microgels, with important implications for screening of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the average macroion concentration, emerges naturally in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure

    Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Get PDF
    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and vaporization enthalpy. Determination of the physicochemical parameters of FAME was carried out by laboratory experimentations and by calculation from bibliographic data. The Hansen parameters of FAME and epoxy resins pre-polymers were theoretically and experimentally determined. The FAME chain length showed a long dependence on the binary diffusion parameters and kinematic viscosity, which are mass and momentum transport properties. Moreover, the vaporization enthalpy of these compounds was directly correlated with the solubilization limits
    corecore