34,460 research outputs found

    Structure of penetrable-rod fluids: Exact properties and comparison between Monte Carlo simulations and two analytic theories

    Get PDF
    Bounded potentials are good models to represent the effective two-body interaction in some colloidal systems, such as dilute solutions of polymer chains in good solvents. The simplest bounded potential is that of penetrable spheres, which takes a positive finite value if the two spheres are overlapped, being 0 otherwise. Even in the one-dimensional case, the penetrable-rod model is far from trivial, since interactions are not restricted to nearest neighbors and so its exact solution is not known. In this paper we first derive the exact correlation functions of penetrable-rod fluids to second order in density at any temperature, as well as in the high-temperature and zero-temperature limits at any density. Next, two simple analytic theories are constructed: a high-temperature approximation based on the exact asymptotic behavior in the limit TT\to\infty and a low-temperature approximation inspired by the exact result in the opposite limit T0T\to 0. Finally, we perform Monte Carlo simulations for a wide range of temperatures and densities to assess the validity of both theories. It is found that they complement each other quite well, exhibiting a good agreement with the simulation data within their respective domains of applicability and becoming practically equivalent on the borderline of those domains. A perspective on the extension of both approaches to the more realistic three-dimensional case is provided.Comment: 19 pages, 11 figures, 4 tables: v2: minor changes; published final versio

    An Interval Newton Method

    Get PDF
    We introduce an interval Newton method for bounding solutions of systems of nonlinear equations. It entails three subalgorithms. The first is a Gauss-Seidel-type step. The second is a real (noninterval) Newton iteration. The third solves the linearized equations by elimination. We explain why each subalgorithm is desirable and how they fit together to provide solutions in as little as one-third or one-quarter the time required by Krawczyk\u27s method [7] in our implementations

    A full quantal theory of one-neutron halo breakup reactions

    Full text link
    We present a theory of one-neutron halo breakup reactions within the framework of post-form distorted wave Born approximation wherein pure Coulomb, pure nuclear and their interference terms are treated consistently in a single setup. This formalism is used to study the breakup of one-neutron halo nucleus 11Be on several targets of different masses. We investigate the role played by the pure Coulomb, pure nuclear and the Coulomb-nuclear interference terms by calculating several reaction observables. The Coulomb-nuclear interference terms are found to be important for more exclusive observables.Comment: 22 pages latex, 9 figures, submitted to Phy. Rev.

    Responses of the Brans-Dicke field due to gravitational collapses

    Full text link
    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω\omega ~ -1.5. If the Brans-Dicke coupling is greater than -1.5, the TuuT_{uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the TvvT_{vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.Comment: 28 pages, 14 figure

    Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Get PDF
    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements

    XY Spin Fluid in an External Magnetic Field

    Full text link
    A method of integral equations is developed to study inhomogeneous fluids with planar spins in an external field. As a result, the calculations for these systems appear to be no more difficult than those for ordinary homogeneous liquids. The approach proposed is applied to the ferromagnetic XY spin fluid in a magnetic field using a soft mean spherical closure and the Born-Green-Yvon equation. This provides an accurate reproduction of the complicated phase diagram behavior obtained by cumbersome Gibbs ensemble simulation and multiple histogram reweighting techniques.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Failure properties of loaded fiber bundles having a lower cutoff in fiber threshold distribution

    Full text link
    Presence of lower cutoff in fiber threshold distribution may affect the failure properties of a bundle of fibers subjected to external load. We investigate this possibility both in a equal load sharing (ELS) fiber bundle model and in local load sharing (LLS) one. We show analytically that in ELS model, the critical strength gets modified due to the presence of lower cutoff and it becomes bounded by an upper limit. Although the dynamic exponents for the susceptibility and relaxation time remain unchanged, the avalanche size distribution shows a permanent deviation from the mean-fiels power law. In the LLS model, we analytically estimate the upper limit of the lower cutoff above which the bundle fails at one instant. Also the system size variation of bundle's strength and the avalanche statistics show strong dependence on the lower cutoff level.Comment: 7 pages and 7 figure

    Spin-polarized electronic structures and transport properties of Fe-Co alloys

    Full text link
    The electrical resistivities of Fe-Co alloys owing to random alloy disorder are calculated using the Kubo-Greenwood formula. The obtained electrical esistivities agree well with experimental data quantitatively at low temperature. The spin-polarization of Fe50Co50 estimated from the conductivity (86%) has opposite sign to that from the densities of the states at the Fermi level (-73%). It is found that the conductivity is governed mainly by s-electrons, and the s-electrons in the minority spin states are less conductive due to strong scattering by the large densities of the states of d-electrons than the majority spin electrons.Comment: 3 pages, 4 figure

    A multiscale view on inverse statistics and gain/loss asymmetry in financial time series

    Full text link
    Researchers have studied the first passage time of financial time series and observed that the smallest time interval needed for a stock index to move a given distance is typically shorter for negative than for positive price movements. The same is not observed for the index constituents, the individual stocks. We use the discrete wavelet transform to illustrate that this is a long rather than short time scale phenomenon -- if enough low frequency content of the price process is removed, the asymmetry disappears. We also propose a new model, which explain the asymmetry by prolonged, correlated down movements of individual stocks
    corecore