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On December 10, 1974, and January 15, 1976, the spacecraft Helios A and

B were launched fr Cape Kennedy as a joint German-American effort in the

field of space re	 . The unique feature about the Helios mission is to

approach the sun within the ecliptic plane closer than any other previous

spacecraft before, the perihelion was taken to be 0.3 Astronomical Units (AU)

corresponding to a value of about 65 solar radii (R 6). This value is expec-

ted still to guarantee a safe thermal balance for the technical equipment

aboard the spacecraft. The orbital period of both spacecraft is approxima-

tely half a year. Using an almost identical instrumentation for Helios A and

B the scientific concept involves twelve experiments exploring basic areas

in solar physics and solar-terrestrial relationships, e.g. in situ-measure-

ments of particle densities, magnetic fields, and cosmic radiation (Porsche,

1975, 1977).

Thic papa; dear with Helios expermannt no. i2 which is essentially a radio

science occultation experiment for probing the solar corona by analysing

propagation effects of the spacecraft's radio signal after passage through the

coronal plasma (S-band: carrier frequency 2.115 GHz uplink/2.295 GHz downlink;

wave length z 14 cm). Likewise spacecraft Pioneer 6 (Stelzried et al., 1970)

the first part of this experiment (Volland et al., 1976, 1977) exploits the

Faraday rotation effect yielding significant measurements within heliocentric

distances of about 2 and 10 R8 . The second part, reported here (also Edenhofer

et al., 1977, 1977a), makes use of what is summarized as two-way time delay

measurements in terms of range, Doppler frequency shift, and electron content

(Martin, 1969) in order to derive the electron density distribution between

about 3 and, principally, up to 215 R 8 at the earth's orbit. The lower limit

is due to the increasing turbulence of the solar plasma destroying wave co-

herence. For Helios it turned out that the upper limit is mainly given by the

orbital geometry but not by the intrinsic system noise level of the signal.

From Helios B, for example, significant variations of the columnar electron

content were measured as far away from the sun as approximately 190 (before)

and 80 R6 (after first inferior conju.iction). Whereas Faraday rotation measu-

rements involve the electron density and the magnetic field, time delay

measurements are related only to electron densities but require precise

orbital information to be analysed (at least for range and Doppler data).

Both parts of this radio science experiment cover complementary aspects in

probing the solar corona as far as data collection and analysis is concerned.



So it is one of the final scientific objectives to model the magnetic field

by a combined data analysis of both parts of the occultation experiment.

Thus in situ-measurements along the Helios trajectory and earthbound obser-

vations of the inner corona up to about 3 R 8 (Hansen et al., 1969) are supple-

mented by indirect measurements from propagation effects of electromagnetic

waves, remote sensing the intermediate coronal and interplanetary medium.



2. Data Collection

Similar radio science (and celestial mechanics) experiments of an occul-

tation type have been performed to explore planetary atmospheres and the

outer corona as well: Kliore et al. (1971); Rasool and Stewart (1971);

Muhleman et al. (1971, 1977); MacDoran et al. (1971); Callahan (1975);

Anderson et al. (1975). It is also possible to make use of solar occultations

of natural, discrete radio sources: Newkirk (1967); Counselman and Rankin

(1972).

2.1 Orbital Geometr

Fig. I shows the orbital geometry for spacecraft Helios A during 1975 as seen

from the north ecliptic pole and with respect to a rotating coordinate system

in which the sun-earth direction is fixed. A 50-cone for the elongation or

sun-earth-probe angle (SEP) indicates the o..cultation situations. Time marks

are given for the first perihelion, first occultation (probing the sun's west

limb only : May 6, bay of year (VOY) 1261, anu second occultation (west to

limb passage: August 31, DOY 243). For the first occultation (SEPmin " 0.60)

the impact parameter p (distance between earth-ilelios sight line and center of

sun; Amin % 2.2 Re) is slowly varying (0.6 x 10-3 Rg/h; value averaged over

two days around occultation) as compared with the second occultation after

aphelion (140 times faster). Between both occultations the race of change for

p is again minim— around July 26 (SEP
max

 - 7.50 /p - 29 R6 ). The earth-Helios

distances and the corresponding roundtrip travel times of the radio signal

for the occultations are 1.8/30 and 1.5 AC/25 min, respectively. For the first

occultation, figure 2 shows the earth's orbit as related to the orbit of He-

lios A within the ecliptic plane (orbital motion is indicated by arrows, time

is shown by intervals of 10 days). The occultation position is illustrated by

a broad line (alignment earth-sun-F.elios), the positions for entering and

leaving the 50 --.:one by lines (less broad) about IS R A off the sun's west limb.

Also there are marks for those time intervals corresponding to the 27-day ro-

tational poriod of the sun (Carrington rotation no. 1626/dashed lines - no.

1629; also sect. 3.3).

The orbital geometry for Helms B during 1976 looks quite similar by shifting

the orbit of Helios A (fig. 1) to left (east) to yield three superior cros-

:
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sings with the earth-sun line: after first perihelion (4-15-76) there were

three successive occultations on 5-16, T)OY 137; 7-10; and 9-25. A value of

SEP 
max% 

3" is reached around 6 . 8 after the exit phase of the first occul-

tation along the sun's east limb (p z 11 1:e). Ths first occultation of He-

lios B as seen from earth along the ecliptic plane is shown in fig. 3 (time

indicated by intervals of one day); the spacecraft was behind tae sun's disk

for about 40 hours.

2.2 Data Acquisition

Considered with comparable interplanetary missions the Helios mission was

especially suitable for solar occultation experiments due to a variety of

reasons. The orbital geometry of both Helios A and B included distinct

occultations (SEP << l o). There were several, successive occultations se-

parated by weeks only (1975/76). The solar plasma could therefore be probed

and compared for several rotational periods of the sun involving west and

east limb observations as well. Slow and fast occultations separated time

scales of plasma activity, when the Helios ravpath intercepted the corona

for long or short periods of time. In early May 1976 there was a special

orbital configuration where a joint analysis of Helios A and B time. delay

data seems to be promising (the ravpath of Helios A was overtaking that of

Helios B). The scientific analysis of wave propagation effects is facilitated

by the Helios raypath being bound to the ecliptic plane. The only latitudinal

variation of solar plasma effects comes from the 7 0 inclination of the sun's

rotational axis to the ecliptic. In adaition, the prime time of the Helios

mission was during the descending and minimum phase of a solar cycle (no. 20

started in 1965), so conditions were quiet and stable for coronal remote

sensing. Those parts of the trajectory where the earth-Helios sight line

was nearly tangential support a separation of radial and angular (longi-

tudinal) coronal probing, because the raypath was nearly constant with re-

spect to radial variations of coronal electron densities. Since the Helios

spacecraft approached the sun closer than any other spacecraft before, one

can make a correlative analysis of occultation data (both time delay and

Faraday rotation) with in situ-measurements. Finally, there is a very charac-

teristic feature: on the average the Helios ranging signal was about 30 or

40 dB stronger than for missions like Mariner 6, 7, and 9. This is mainly

due to a low noise, double conversion phase locked loop receiver with va-

riable bandpass limiter and a high power node of.operation for the transponder



together with a 23 dB-high gain antenna. Thus substantially less noisy time

delay data could be collected closer to the sun. Moreover for Helios B (also

partly Helios A) an improved ranging machine (MU 2), especially suitable for

solar occultation experiments, was available. On the other hand, a disadvan-

tage was the lack of dual frequency capability aboard the Helios spacecraft

(such as S/X-band for Mariner 10 and Vikings 1, 2).

The time delay measurements have been taken by NASA's Deep Space Network

(DSN), operated by the Jet Propulsion Laboratory (JPL), California Institute

of Technology, Pasadena, USA. During occultation preferably thf: 64-m para-

bolic antennas of this network were used (tracking station no. 14, Califor-

nia; no.43, Australia) with 100 kW of transmitted power. Away from oc-,ul-

tation, the entire DSN including the 26-m antennas participated in the data

acquisition. The notation time delay measurements means data acquisition in

terms of three different data types also called radiometric data: range

(roundtrip time delay), Doppler frequency shift (coherent two-way range rate),

and electron content (differential phase). It is evident that the measure-

ment technique and procedure are crucial to perform such an occultation ex-

periment (Martin, 1969; Martin, Zygielbaum, 1977). The time delay data are

determined by precisely measuring the elapsed time between the transmission

1
of an encoded signal from the tracking station and its return, retransmitted

from the spacecraft, back to the ground. A highly accurate and stable rubidium

vapor oscillator, a frequency synthesizer, and a binary counter are used to

generate and modulate the range signal. A range acquisition is performed by

k transmitting a carrier-coherent sequence of binary-coded square waves or

range components (highest modulation frequency about 500 KHz Z fundamental

time period 2 us). By comparing the phase of the returning code with a re-

ference based on that transmitted the roundtrip delay is determined. The

Doppler frequency shift associated with the carrier is used to modify and

adjust the zeference phase to compensate for the two-way Doppler distortion

of code phase. In order to correlate the individual range components inte-

gration times totaling 5 or 40 min were necessary depending upon the signal-

to-noise ratio (SNR) in the ranging channel (with a typical system noise

temperature of 25 K). While the shortest, highest-frequency range com-

ponent determines the system's resolution, generally up to 9 additional com-

ponents (with binary-related fractions of the fundamental frequency) were

used for Helios in order to resolve range ambiguities (e.g. components no. 5:

4.56; no.	 10:	 146 km) adjusted to an a priori orbital fit within a certain

error probability (10-2 or 10-3 ). Together with the roundtrip travel time of
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the signal it took up to an hour or so to obtain the value of a single range

measurement(non-automatic mode of operation). Usually the strategy of the

Helios radio science experimenters was to collect one or two range points

at the beginning and end of a tracking pass, respectively. For a typical 8

hour-tracking pass sometimes up to 10 or 15 range measurements were collected.

Range rate or Doppler data, respectively, were meas u red by using a samp,ing

time of generally 60 sec.

Comparing the magnitude of the time delay measured due to the solar corona

(from 0.1 to 30 us; via differential phase even some 10 nA) to typical round-

trip signal travel times of 30 min makes evident the principal requirement

of utmost internal stability within the ranging system. Extensive calibration

tests of the total ranging system have shown the capability to meet such a

precision requirement: the order of magnitude of the long-term delay stability

drifts by abou ,: 15 ns per month; the short-term stability over 5 or 8 hours

drifts by about 2 ns/h with a value of 3 ps for the average delay and a

standard deviation of 6 ns (Martin, 1970). Moreover it turned out that even

VVer a 60 uu deCICa yn iu uvLnivai signal level (20 kW) the resulting change

in system delay is less than 1 ns. These numbers are certainly conservative

in view of latest improvements of the ranging system. Ground tests (thermal

vacuum, signal level, compatibility, etc.) showed a ranging uncertainty due

to the spacecraft's transponder of less than 10 ns (Bdttger et al., 1975).

Operational ranging normally includes a pre- and post-track calibration. Test

data results indicate that the maximum drift in the ranging system's time

delay experienced over a full 8 h Helios tracking pass was less than 10 ns

(0.3 x with respect to the average value of the system delay).

Electron content measurements were collected by using a special technique

developed at JPL (MacDoran, Martin, !970; MacDoran, 1970) and first applied

to the Mariner 6 and 7 missions (MacDoran et al., 1971). This measurement

_echnique is based upon the group delay and phase advance accumulated rlong

the raypath according to wave propagation in a dispersive medium like the solar

corona. Group and . phase velocity v 91 " c(1 + 6 N/f 2 ) differ by the same,

small amount (magnetic field and collisions neglected; c-velocity of light,

a-constant, N-electron density, f-carrier frequency). Specifically, taking

the resulti-g, opposite signed phase displacement (differential phase) in

terms of the difference between the range data and the integrated Doppler

data collected yields a quanti-y D (t) proportional to variations Al of the

L
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columnar electron content I(t):

	

AI(t) - I(t) - I(to )	 a D(t) ►

J
I(t) - 
	
N(s,t) do	 I1/m2 1.

The physical meaning of the quantity D is the difference between the signal's

group and phase path. Since Helios did not have dual frequency capability,

the quantity AI(t) is an average value of the up- and down-link columnar elec-

tron content variation where the reference value I(t o) is unknown (the factor

a a 6x10 1f [1/m3 1 depends upon the up- and downlink carrier frequency). Thus
what is actually measured are variations of the electron content with respect

to some reference or background level. A set of electron content measurements

6I(t) starts at time 1.o with an inte igration interval At generally equal to 2

min (for Helios B the maximum time resolution was as high as 0.5 min), i.e.

discrete data values are generated at intervals of At. As the SNR decreased

during occultation, At was raised to about 5 min. By comparing the phase

.easured during succeeding intervals with the initial determination the va-

riations of the phase displacement are analogous to changes in the number of

charged particles along the raypath. For thin data type the notation DRVID has

been introduced (Differenced Range Versus Integrated Doppler).

It is obvious from the conch	 this technique of measurement that all effects

contributing to D in a non-dispersive way (independent of frequency) are can-

celled. These effects include purely geometrical effects (e.g. orbital motions,

antenna nutation), tropospheric propagation effects and relativistic delay, or

any equi},mrat delays common to both the range and Doppler measurement subsystem.

As a consequence the data evaluation is widely decoupled from the problem of

orbit determination. In a first order approximation the spacecraft's trajectory

can be described by a two-body model from celestial mechanics. Contrary to the

range and Doppler data, the information sensitive to the solar corona is directly

accessible tc a scientific analysis (i..e. comparable with a Faraday rotation

type of measurement`.

The basic radiometric observables are two-wiy coherent Doppler and range. No

range acquisition can be performed witho-it first establishing a coherent

link anO no electron content data can be taken without a valid range

acquisition. While Doppler and range data are used precisely to determine the

spacecraft's orbit, it is only the range data, however, that can provide in-
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formation about absolute values for geometric range and the coronal effects.

The remaining, time-dependent integration constants for the Doppler and the

electron content data I(t o) are to be determined from information solely in-

herent to range data. After a range acquisition is completed by integrating

all the lower frequency range components, the first range component is resumed

in order to generate a set of electron content data starting at time t = t o as

described above (post-acquisition DRViD). This set is interrupted (i.e. an ab-

rupt, unknown change of the integration constant), whenever a new range acqui-

sition is initiated, etc. An additional offset caused by slipping Doppler

cycles due to enhanced plasma dynamics can usually be recovered by adjusting

the slope of AI(t) across the discontinuity. Obviously a reasonable compromise

had to be found in order to have long, uninterrupted sets of electron content

data (e.g. 6 hours from a standard 8 h-tracking pass) and still obtain a

sufficient number of range data. In terms of coronal probing this means to

prefer watching for short- and long-term variations of the electron density,

respectively (time scalet hours/days or weeks).

Fig. 4 gives an idea of the difficulties in establishing a coherent link and

obtaining valid range acquisitions close to the sun (data taken from a previous

Mariner mission). Spectral broadening of the radio signal (about 10-20 Hz for

p z 4 R0) complicates the operation of both spacecraft and ground phase locked

loop receivers. By monitoring the actually measured signal spectrum, it was

possible, in real time, to adjust the ground receiver's bandwidth. Around

occultation the spacecraft's receiver bandwidth (B8ttger et al., 1975) could

be set to a minimum value of about 5 Hz for adverse SNR and a bit rate of 8

bit/s (variable by steps of 8, 16, etc. up to 2048 bit/s). Sidelobes due to

the quadripod supporting the Cassegrain subreflector • corrupted the tracking

antenna's radiation pattern causing the system noise temperature to raise to

1000 K or more during near-sun tracking. Predictions and real time measure-

ments of this temperature were made to optimize the tracking schedule and

thereby data acquisition. Real time DRUID-plats provided information on trends

in plasma activity facilitating decisions to give up an electron content data

set in favor of additional range dat.i or, alternatively, to change parameters

of the ranging system (e.S. integration times, number of range components) to

meet sudden enhancements of the noice level. An exceptionally motivated Ran-

ging Advisor Team (Helios B) at JPL took over such activities on a day-to-day

basis during occultation optimizing equipment configurations to ensure high

IL



quality time delay measurements.

These team efforts were enhanced by an improved ranging machine (MU 2) espe-

cially favorable to occultation type experiments and operated during the Helios

mission at tracking station no. 14 (Martin, xygielbaum, 1977). Advantages over

other ranging systems include: A fully programable sequential transmission of

the range components to maximize available power in each component and reduce

the time required for range measurements. Only one roundtrip signal travel

time per tracking pass is lost to obtain a whole set of multiple, independent

range measurements (i.e. saving about 30x(n-1) min of valuable tracking time

for every n range d"ta) by "pipelining" subsequent range acquisitions in space,

one after the other, also to preclude a r indtrip time delay between measure-

ments. Using the consistency and magnitude of the MU 2-correlation voltages

(fully digitized signal processing) provided via the DSN high speed data line

it was possible to assess and control the quality of the individual range

measurements from real time printouts. As the raypath approaches the sun,

modulation jitter of the first, shortest range component or code becomes cri-

cal. The MU 2-technique allows selection of an optimal combination of any

Aitial (e.g. 4, 8 us, etc., instead of 2 Us) and final range component while

a servo mechanism maintains the proper code alignment on the correlation vol-

tages of all codes despite plasma induced phase shifts. It was also possible

to make a redetermination of the last range measurement without interrupting

a concurrent long DRVID-stretch and change the integration interval At to

match actual noise levels. Operational error sources were reduced by automatic

calibration of the radio signal phase demodulator and automatic gain control

of the input signal level. Supporting a careful a posteriori analysis, it was

also possible to use the correlation voltages of each range component to re-

construct the corresponding correlation functions assuming Gaussian noise to

develop a combined likelihood function to be evaluated by a maximum likelihood

estimator. By selecting the most probable range point of the entire acquisi-

tion an improvement of up to 1.5 dB in ranging SNR could be obtained.

As a result of all these efforts the quality and quantity of the time delay

,measurements from spacecraft Helios B are excellent. A total number of 141

range acquisitions was attempted within 3 weeks of May ` 76 (at station no. 14),
t.

about 80 Z of these were found to be successful (43 pre-, 69 post-occultation

range measurt4veocs). Because 16 range measurements turned out to be marginal

(quality 6&sed on orbit fit), they were processed by a maximum likelihood



estimator. High flexibility made it possible in real time to respond to adverse

conditions. For example, day-to-day variations of the input signal level of as

much as 30 dB were observed with a 50 dB decrease over two weeks towards occul-

tation. Maximum use could be made of the tracking time allocated to Helios and

to be shared with othe

competitive situation.

tation as close to the

(estimated SNR for the

radio range system and

r space projects like Viking and Pioneer in an extremely

The acquisition of validated range data during an occul-

sun as SEP - 0.84
0

/p - 3.1 R d was never achieved before

ranging channel 4 -15 dR) and sets a new standard in

operation performance.

3. Observations -- Preliminary Anal sis

The Helios A time delay measurements to be reported here cover the time interval

March till September 1975. The DSN provided a total number of approximately 340

range measurements (64 m- and 26 m- stations as well). Contrary to Helios B the

primary mission of Helios A did not include the first occultation, so most of

the range measurements were collected just around the first and second peri-

helion (March plus April: 120; September: 105), i.e. the tracking coverage was

supporting the entry phase of the first (5-6-75) and the (late) exit phase of

the second (8-31) occultation. Unfortunately there are some bigger data gaps (ten

times 4 till 7 days; and, most substantially, about 55 days amidst first occul-

tation, coherent Doppler and range data are especially sparse during July and

August. First efforts to run a precision orbit determination program in order

to fit the Helios A radiometric data yielded poor results, e.g. probably more

than 50 R of the range acquisitions are expected to be invalid or at least

questionable. Information from station calibration data seems to be insufficient,

four spacecraft maneuvers had to be taken into account. Due to difficulties in

data handling and processing, about 55 MU 2-range measurements (around May/June)

are not yet included in the orbit fit. So the concept was first to start the

scientific orbital analysis for the Helios B spacecraft, where the overall

status of this experiment looks much more promising.

3.1 Typical Data Sets

Doppler data from Helios A were analysed by Berman and Wackley (1976) to esti-

mate parameters of an heuristic Doppler noise model for solar occultations. Fig.

5 represents the Doppler noise versus time as derived by using a data processing

scheme with moving average. Usually the noise level is as low as 3 or 5 mHz
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increasing to values between 0.1 and I Hz during occultation (numbers become

questionable close to occultation). This figure gives an idea of the distinct

influence of the solar corona during the slow first and the fast second occul-

tation. Significant structures of minor peaks can be distinguished, for in-

stance around DOY 83 (3-24) in coincidence with unusual variations of elec-

tron content measurements (sect. 3.5).

Fig. 6 shows representative time delay (roundtrip) or range (one-way) residuals

from a preliminary analysis of a 2 1/2 month pre-occultation arc of Helios B

radiometric data (March 1 till May 16, 1976) assuming a 3-parameter, steady-

state coronal electron density model to be discussed in sect. 3.4 (a significant

quantity of range data from other tracking stations, especially from no. 43, is

not yet included). As is evident, some systematic trends are still present in

the residuals (there is no sense to show raw data) and expected to be removed

with a more detailed analysis. The solid curve gives the average coronal time

delay signature. Away from occultation (SEP - 370) a normal value is about

0.1 us, during April and May there is a steep increase; the last eight, validated

range measurements were taken on 5-13 as close to the sun as 3.1 R  (coronal time

delay z 23 us; roundtrip signal travel time 27.3 min corresponding to 245.4x106

km in range). The first valid range data acquired after occultation occurred on

5-20 (3.8 Rd/l0).

As far as electron content data are concerned there are approximately 45

sets of high quality measurements from Helios A varying between a duration of

0.5 until 6 hours. Only. about 1/3 of these se - lasts longer than 3 h. The set

closest to the sun (6.2 R 6/1.70) and still unquestionable was taken on 4-21-75

during the entry phase of the first occultation and is as short as 1.7 h.

Figs. 7a,b represent two typical data sets. Elongation and impact parameter

are indicated and the noise level is shown with error bars. The time scale is

given in UT and local mean time. On 3-7, for example, the electron content AI

(right scale) was measured for about 4 h, showing an increase (rate of change

approximately 4.5x10 13 m 2 s- I ) as usually expected during pre-occultation.

The number of electrons along the raypath is steadily increasing towards the

sun (Helios' distance to sun still 76 R d). Typical rates of change taken from

-2averages on at least 2 or 3 h of observations vary like (0.7 to 5O)x1O 1 m	 s-I.

The noise level is a low as o y *_ 2x10 16 m 2 . An example of unusual temporal

variations for a relatively large impact parameter p ; 54 R  is shown by a data

set from 3-21 (only a few days after perihelion on 3-15). The noise level is

enhanced (up to 15x1O
16
 m 2 ), typical time constants run as long as 1.5 or 2 h.
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Again, for Helios B the status also for electron content measurements is bet-

ter, at least from a data quantity point of view (duration of individual data

sets). Fig. 8 shows Helios B electron content data taken on 5-11 -76 extending
as long as 6 h; the raypath's offset from the sun's west limb was only 4.8 R9.

To our knowledge there are no spacecraft supported coronal electron content

measurements closer to the sun. The total variation of the electron content

turns out to be approximately 0.9x10 19 m , the maximum rate of change is as
high as 6x10 15 m2 a  (averaged over some 20 min). The excellent data quality
is obvious from the noise level being as low as 0.8x1017 m2.

3.2 Data Processing

For indirect measurements especially from an occultation type experiment

data calibration is one fundamental part of the analysis. It is understandable

from sect. 2.2 that for the electron content measurements calibration is not

a serious problem, at least when compared with calibrating the range data.

The electron content measured via DRVID-technique has to be corrected for

dispersive propagation effects contributed by that part of the signal's ray-

path traversing the terrestrial ionosphere. So far approximately half of the

Helios A data are corrected by using a standard calibration procedure

developed by Yip (1974): actual VHF-Faraday rotation measurements (Cali-

fornia, Australia) to geostationary satellites (ATS series) are taken to

derive the total electron content followed by a conversion into the desired

line of sight tracking station - Helios spacecraft. A madeling computer program

supposes a Chapman type ionosphere and a dipole field; differences in geo-

magnetic latitude are adjusted for as part of the conversion. During the Ma-

riner 10 dual frequency mission the accuracy of this correction procedure has

been demonstrated significantly to improve the navigation for spacecraft ma-

neuvers. On 3-21 (fig. 7b), for instance, the ionospheric contribution to the

variation in electron content (time resolution approximately 1/2 h) was as

small as about 3x10 16 m 2 within 4 of observation (for elevation angles of
the tracking antenna down to 30

0
, whereas the total variation measured by

Helios is 1.5x10 8 
m 

2 
(2 x error contribution). During the occultations of

Helios A the maximum influence of the ionosphere turned out to be typically

of the order of 0 to 9) x1016 m-2 at low elevation angles. As the raypath
approaches the sun, ionospheric effects become negligible in comparison to

solar plasma effects. On the other hand, the ionospheric calibration procedure

is important by error rates of 10 or 20 Z when analysing data for quasi-statio-



nAry features of the extended corona such as during pre-perihelion time inter-

vals (65 < p < 80 R 8) of Helios A (sect. 3.5).

The station calibration of the time delay data as outlined in sect. 2.2 in-

troduced no critical restriction. For a full 8 h-tracking pass time delay drift

and standard deviation were certainly less than 10 and 5 ns, respectively.

In order to save valuable tracking time sometimes it was possible to abandon

the 1/2 h post-calibration for short tracking passes. Until now the trans-

ponder calibration is accounted for only by a constant.

An essential part of the analysis of the range and Doppler data deals with

the problem of orbit determination. Evidently the determination of coronal

electron densities is critically dependent on a precise knowledge of the

spacecraft's orbital motion, because both these types of radiometric data

are taken to solve for the orbit and corona as well. A highly sophisticated

double precision orbit determination program developed at JPL was used to

integrate the equations of motion numerically (e.g. Moyer, 1971). The current

best knowledge of the planetary and lunar ephemerides and the locations of

the DSN tracking stations have been utilized in this work. So far there are

at least indications for Helios B that there were no crucial problems to take

into account non-gravitational forces accumulating perturbative accelerations

on the spacecraft, e.g. arising from the attitude control system (spin stabi-

lization) or the solar radiation pressure. The orbit determination problems

associated with Helios A were already mentioned. Tropospheric and ionospheric

corrections for propagation effects follow standard routines. From an exten-

sive orbital analysis of space missions Anderson et al. (1975) found that

for purposes of high precision orbit determination generally there is some

6 month-optimal length of data arc to be covered. hough this length may be

somewhat different for the Helios B mission, it is positively due to the

quantity and excellent quality of Helios B radiometric data that even a 2 1/2

month data arc yields acceptable range residuals (fig. 6) and preliminary,

surprisingly good estimates of steady-state coronal parameters (sect. 3.4).

So far strong evidence has been found that for Helios B the ranging accuracy

seems to be limited just by plasma effects from the coronal and interplanetary

medium. However, additional analysis concerning the Helios solar radiation

pressure model, station and transponder calibration, and calibrations due to

the turbulent corona have yet to be fully determined.

It should be noted that for relativistic perturbations affecting the space-
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craft motion or the radio signal an Einstein model was used. The relativi-

stic time delay effect (to be investigated by Helios exp. no. 11) is simi-

lar to that of the corona but much larger (e.g. Helios B prediction for 5-13:

corona 20 ps/measured 28 ps; relativity 170 us) and also different in time

scale (half-decrease: i or 2 days; 14 days). There is abundant evidence in

the literature strongly to support Einstein's theory (e.g. Anderson et al.,

1975) and this implicit assumption has been made in the analysis thus far.

So far no error analysis has been conducted to see how a I % error in the re-

lativistic effect maps into the estimated coronal parameters (sect. 3.4). In-

formation about standard deviations of parameters to be derived include the

effect of the formal uncertainty in the gravitational theory, i.e. essentially

one per cent.

For this experiment, the weighting scheme for the radiometric data as an input

to the orbit determination process is especially important. Specifically, the

weighting scheme decides whether or not the plasma effects inherent to the

data are merely taken as noise-like statistical fluctuations of coronal elec-

tron densities or as mainly deterministic density variations in space and

time. The total a priori standard deviation a on the round trip time delay

measurements is assumed to follow a t = (as + ap) 1 `, where os - 0.2 Us

l'S(= 30 m in range) stands for a constant value of system noise and a p = a/puN

(a - const - 33) denotes the coronal plasma noise following the "frozen turbu-

lence" hypothesis as given by Muhleman et al. (1977). The dependence on the

impact parameter p essentially corresponds to an inverse quadratic law of a

steady-state coronal model (sect. 3.4); at present the values for a s and a 

are given by a least squares fit to range residuals from Mariner 6, 7 data. In

terms of meters (one-way) the plasma noise for the Helios observations is assu-

med to vary between o p $ 950 and 10 m (p - 3 and 65 R S ). However, there is evi-

dence that this weighting scheme is too conservative for the analysis of Helios

data: Firstly, there were some substantial technical (on ground and aboard

as well) and operational improvements in favor of ranging measurements for

Helios B; secondly, the Mariner data were collected at a different time (solar

maximum), involving different parts of the solar atmosphere (also high lati-

:	 tudes). A more realistic value for a s may be one order of magnitude smaller.

Also some electron content data sets indicate that the standard deviation 0
p

may be smaller, e.g. on 3-7-75 (fig. 7a) the standard deviation (related to a

linear least squares fit) actually turns out to be about 0.5 m, whereas the

weighting scheme takes 7.5 m (p - 76 R d). For day 5-13-76, i.e. ranging closest
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to the sun, it can be shown that 6 range residuals (out of a total number of

8 range acquisitions) nicely follow the temporal changes of the electron con-

tent measured and show variations of less than 100 m which is quite unusual for

p • 3.1 RV whereas the weighting scheme takes about 900 m. Moreover this scheme

assumes that the spacecraft is always far behind the solar corona (as was in-

deed the case for Mariner 6 and 7). This preliminary weighting scheme for the

procedure of orbit determination will be modified for Helios (e.g. taking

Q f const) to allow for more resolution in probing the coronal medium.

In order to derive a more realistic, refined weighting scheme for the range

data in case of the Helios missions information on the actually measured va-

riations of the electron content daring an individual tracking pass is most

valuable. A direct measure of these variations is given by the DRVID data

(differential phase) but this data type has the disadvantage that it can be

measured only after the acquisition of a range measurement. It has been demon-

strated by Esposito and Luneburg (1976/77) that the same information can be ex-

tracted directly from the Doppler residuals of a preliminary orbit determi-

nation. A constant or even linear bias in these residuals resulting from an

imperfect knowledge of the orbit can be determined by fitting integrated

Doppler residuals (phase residuals) with the DRVID measurements in a least

squares sense. The advantage of using phase residuals is to have a better

time resolution (sampling time for Doppler data often 10 s, but generally

2 min for DRVID), usually a higher accuracy ( less noise from ranging modu-

lation) and longer data stretches of electron content variation information.

As an example, fig. 16 shows the agreemeni^ between the electron content va-

riations either measured via differential phase (solid line) during a 7 h-

data set or via construction from phase or integrated Doppler residuals

(dotted; data set extended by about 1 h); a 20 m-offset makes the com; ,arison

more readily evident.

After subtracting the differential increase of the electron content variation

as predicted (and iteratively improved) by the average steady-state electron

density model due to the relative motion of earth and spacecraft with re-

spect to this steady-state model (a purely geometrical effect) the remaining

variations of the electron content measurements are assumed to reflect the

turbulence characteristics of the medium. A detailed investigation of these

phase fluctuations is presently carried out. The difference between the

actually measured phase variations and the time average of the elctron content
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variations over the whole pass at those times when ranging data have been

measured form "turbulence range calibrations" and will be subtracted from the

measured range value in the same way as for instance station calibrations.

The variance between the calculated time average over the finite pass length

and the ensemble average will provide new weights for the weighting scheme.

They critically depend upon the pass length and the correlation function of

the phase fluctuation.

3.3 Comparison with Ground-Based Observations of the Inner Solar Corona

An essential part of the data analysis of any solar occultation experiment is

to compare the results with other information about the global structure of

the corona at that time. So the scientific analysis of this experiment was

prepared and started in cooperation with the High Altitude Observatory (HAO)1

National Center for Atmospheric Research, Boulder, USA. Since 1964, HAO has

been carrying out a program of synoptic measurements of the intensity distri-

bution of the sun's white light ("K") corona over the height range 1.1 -

2.7 R0 (solar radii from sun center) with sun-eclipsing K-coronameters (Wlerick,

Axtell, 1957) from Mauna Loa, Hawaii. Azimuthal scans (steps of 5 0) are

made around the solar limb at discrete heights (as many as 10) with a polari-

meter, providing a two-dimensional intensity distribution in the plane of the sky

of the product "pB" (polarization times brightness) which is due to Thomson

scattering from electrons in the solar atmosphere. Because of the earth's or-

bital motion, the sun appears to rotate for the ground-based observer with a

period of approximately 27 days, so that successive daily measurements can be

combined to generate three-dimensional maps of the overall, large-scale inten-

sity distribution at these various heights in the corona. In principle, pB-

measurements can be deconvolved into coronal electron density models (such as

discussed by Altschuler and Perry, 1972), but an entirely satisfactory, in-

expensive computational program has not yet been developed. Though it is still

some kind of an unsolved problem to invert pB-values via an integral relation-

ship into electron densities, a height-dependent conversion factor can be in-

troduced by an averaging process. Nonetheless, the raw pB-data are being used

successfully for studies of short-term, transient changes (Hansen et al.,

1974) as well as for studies of the longer-term evolution of magnetically-

controlled structures of the inner corona (Hansen et al., 1972). These measure-

ments can provide a basis for extrapolating optical determinations of electron

density of the innermost corona (below 3 R 0) to the much greater heights above

the sun's west or east limb in the ecliptic plane where the electron content
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was actually measured along the raypath to Helios spacecraft. Unfortunately,

during the Helios occultations, there were no satellite-borne coronagraphs in

operation; such instruments can provide information about coronal structures

to distances of 6 - 10 R  (reviewed by Tousey, 1973).

The interpretation of the Helios time delay data as an indicator of coronal

plasma conditions is greatly simplified by the fact that with the general

decline of solar activity near the end of the solar cycle, the overall shape

of the corona became quite stable from rotation to rotation with a nearly

axially symmetric distribution as typical near solar minimum (Hansen et al.,

1969, 1976; Saito, 1970; fundhausen et al., 1976; Jager, 1959; Scheffler,

Elsasser, 19 74). This is illus`rated in fig. 9 with a pair of isophotal

maps of the coronal intensity distribution at 1.5 R 6 during November 1974

(shortly before launch of Helios A) and July 1976 (after first occultation

of Helios B), as typical of the descending phase and minimum phase of the

present solar cycle, respectively. An enormous simplification in the global

shape is seen between those two times with the corona becoming limited to a

nearly uniform, moderately bright band around the solar equator.

Fig. 10 presents the Mauna Loa K-coronal measurements in a different form.

Here only the equatorial intensities are plotted (schematically), at succes-

sive limb passages around the first occultation of Helios A (starting at

carrington rotation no. 1625: east/west limb data DOY 42.5/56.1 or February

11/February 25, 1975). The horizontal line represents the average coronal inten-

sity around that time so that below-average values are indicative of coronal

"holes". Dashed lines indicate times when east and west limb observations had

to be combined to fill data gaps. Maximum occultation was during no. 1627 on

May 6 (DOY 126) at the west limb. The stability of coronal structures is

obvious as far as quiet conditions and extreme intensities are concerned, e.g.

the particularly stable and intensive coronal hole around 270 0 solar longitude

extending from the northern hemisphere of the sun for these eight solar rota-

tions, with a longitudinal variation of ± 10 to 20°. A second, less intensive

coronal hole extending from the southern hemisphere around 90 to 120 0 longi-

tude existed from before rotation no. 1625 and was developing again over

about six rotational periods until no. 1634, including the second Helios A

occultation.

The consequences for the analysis of the Helios time delay data are evident:

Conditions were most favorable to probe stationary and quasi-stationary



features of the solar corona (sect. 3.4, Fig. 11; Fig. 7a, sect. 3.5); con-

ditions were also favorable t.) relate transient features of the electron con-

tent measurements (e.g. fig. 7b, sect. 3.6) to phenomena within the innermost

corona generally associated with structures corotating for several solar rota-

tional periods, as actually visible from HAO's K-coronagraph data. There is

evidence that a correlation of plasma phenomena from different regions of the

solar corona or interplanetary medium is useful and promising (e.g. Hundhau-

sen, 1972; Stewart et al., 1974; Gosling et al., 1975; Hansen et al., 1976).

This is also true with respect to a potential extrapolation into those re-

gions where Helios in situ-measurements have been taken (such as data from

Helios plasma experiment no. 1).

3.4 Stationary Corona

A major part of the scientific objectives of this experiment covers the deriva-

tion of the spatial and temporal distribution of coronal electron densities.

Sophisticated filter algorithms properly combined with all the relevant a

priori information are necessary to derive the density distribution with a

sufficient resolution from remote sensing measurements via integral relation-

ships involving propagation effects of electromagnetic waves in inhomogeneous

media like planetary and solar atmospheres (e.g. Fjeldbo, Eshleman, 1968;

Kliore et al., 1971; Colin et al., 1972; Edenhofer, 1974). There are, for

instance, problems of numerical instability to invert the integral equations

of time delay measurements for electron densities. This is particularly true

when analysing range data not only for a radial electron density profile but

also for longitudinal (and much less latitudinal) coronal effects, and when

analysing electron content data for effects of coronal plasma dynamics by a

sequential filtering concept to probe also time variations (Pirraglia, Gross,

1970; Saito, 1970). Generally a compromise has to be balanced between numerical

stability and power of resolution in space and time. Simulated Helios time

delay data were analysed in a simplified computer experiment to study issues

like data redundancy necessary and noise levels to be expected (Luneburg, 1974).

Presently a lengthy procedure of careful data reduction such as calibration

and double precision orbit determination is still being carried out before

applying inversion analyses as indicated.

As a first attempt to solve for coronal electron densities a parameterization

of the problem seems to be reasonable. Following, for example, Muhleman



et al. (1971, 1977) and Anderson et al. (1975) the coronal electron density

is modeled as a steady-state (time scale: months), spherically (at least

axially) symmetric distribution given by a three parameter Baumbach-interpo-

lation formula (also Scheffler, E1sRsser, 1974)

N(r) - A + B
r6	 r2+c .

where the quantity N denotes the electron density [m 3 ], r the dimensionless

heliocentric distance in solar radii (r > 3 R 0), and A, B, c are corona: para-

meters to be determined from the experimental data as average spatial and tem-

poral values. The conditions holding for the measurement of the Helios time de-

lay data such as average solar minimum, probing confined to ecliptic plane,

etc. seem to strengthen the applicability of such a simplified model. No time

delay measurements were collected closer than 3.1 R e (Helios B), where

powers like r-16 arise dominating for r < 1.1 Re . The first term in (2) is

expected to contribute significantly only for distances r < 4 R e , so the

parameter A might merely be determinable from Helios B data (ranging from

late entry and early exist phase of occultation as close as p - 3.1 and 3.8

Re , respectively). The parameters B and a are highly correlated (table 2).

The coronal electron density may vary by a factor of 2 or 3 depending on helio-

graphic latitude (equatorial versus polar) and phase of solar cycle (Jager,

1959; Hansen et al., 1969; Scheffler, ElsIsser, 1974). Density models like (2)

are also used to describe an average brightness functio ►i of the white light

corona. Table 1 summarizes a priori values of the coronal parameters A, B, e

as well as results from Mariners 6 and 7 as an example of previous occultation

type experiments.

Table 1. Solar corona parameters

A/10 14 m 3	 B/1012 m 3	 c

1.3 _* 0.9	 1.15 *- 0.7	 0.3	 * o.3	 a priori

0.69 ± 0.85	 0.54 ± 0.56	 0.047 . 0.24	 Mariner 6

-	 0.66 *_ 0.53	 0.08 '_ 0.24	 Mariner 7

Whereas the first term of (2) - including the term r-16 all the more - is

known also from earth-bound solar eclipse observations (e.g. coronagraph

measurements), the second term with the parameters B and c is considered

to be kn,wn only with insufficient reliability ("diffuse cororit") and to

(2)
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vary ' .ess with solar activity (mainly observations along the earth's orbit).

Due tr the solar corona there is a time delay T accumulated along the earth-

Helios raypath

T-- 1 Ids - ^ J ds,	 (3)

or equivalently, expressible in terms of the difference between the radio

signal's group path and the purely geometrical distance (n - v g/c < 1 is the

radio refractive index of to coronal medium). Likewise for (1) it is a good

approximation for S-band signal frequencies and media like the solar corona

to neglect the effects of magnetic field and collisions in the dispersion

relation for n. Assuming e - 0 in order to get a closed, approximate expres-

sion the coronal time delay is given by

T 
f2 

PSE (A5 + B) •
P	 P

	 (4)

where k is a constant and PSE denotes the probe -sun-earth angle (close to

n around occultation). Thus, the time delay T is inversely proportional to

the frequency squared and to the fifth and first power of the ray's impact

parameter.

With the density model (2) fully incorporated into JPL ' s double precision

orbit determination program the problem of determining the solar corona

electron density distribution is reduced to the problem of estimation of

the three steady-state coronal parameters A, B, c. The general procedure

of orbit determination and weighting of radiometric data (still conservati-

ve) follows the description of sect. 3.2. In a preliminary analysis Helios

B radiometric data have been analysed that were acquired within Harch 1 to

Hay 16, 197E (2 1 /2 months data arc with 3 < p < 65 Re). The residuals (ob-

served minus computed values) for the range and Doppler data (see also fig. 6)

were formed and analysed using the classical weighted least squares algorithm

(batch filter) to minimize the sum of the squares of the weighted data resi-

duals Az as well as weighted corrections Ai to a priori estimates of the Para-

meters. The equations for the corrections Ax to the estimated parameters and

for the estimated parameter covariance matrix A are given by

Ax- (At WA +A 1 ) -1 [At WAz +A 1 a] ,

(5)

A - (At W A + A
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where W is the weighting matrix, A the a priori parameter covariance matrix,

and the matrix A contains the partial derivatives of the data with respect

t-) the unknown parameters (superscripts t and -1 mean matrix transposition

and inversion, respectively). U&ually the starting and a priori values for

the parameter corrections are thought to be equal (Ai - 0); the entire pro-

cess according to (S) is iterated until convergence is assured. For this pre-

liminary analysis a basic set of 12 parameters was estimated, including: the

6 orbital elements of the Helios B trajectory (or equivalently the spacecraft's

velocity components and coordinates), 3 parameters of a solar radiation pres-

sure model (directly coupled to the equations of orbital motion), and the 3

noronal parameters of the electron density model (uncoupled from equations of

motion). In addition, a set of constrained parameters adjusting to station lo-

cations, data biases, ephemeris uncertainties, etc. are being applied. When e

sufficiently accurate and reliable post-flight orbit can be generated, the mo-

deling for orbit determination will be refined, i.e. the set of parameters to

be estimated will be increased step by step (possibly up to a 20 or 30-component

state vector).

At present there are still data problems such as Doppler noise. After the

first occultation the Helios R 6pacecraft continued to remain close to the

sun for a long period as time. This is, for example, in contrast to the Ma-

riner 6 and 7 trajectories, where after occultation the Doppler data quickly

recovered to its original, high quality. For such a situation an improved

weighting scheme to be derived from integrated Doppler residuals will cer-

tainly be of value.

A typical and preliminary solution for the coronal parameters A, B, and c

estimated from Helios B range and Doppler data as outlined above is summa-

rized in table 2. The electron density modeled by this parameter set is

shown by fig. 11 as a function of the heliocentric distance in comparison

with the Mariner results (Muhleman at al., 1977).

Table 2: Preliminary estimate of coronal parameters (Helios B)

correlation coefficients

A11014 m
-3	

0,3	 --	 -0.371	 -0.369

B/10
12
 m 

3	
1,0	 -0.371	 --	 0.998

E	 0,2	 -0.369	 0,998	 --
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10  and 7x106 m-3 , respectively. A comparison with the Mariner 6 coronal model

needs some care. There are two basic differences: the Mariner 6 occultation

(p > 3.6 R0) on 4-30-70 was durinC solar maximum and the orbital geometry

caused the raypath to move through the full range of solar latitudes, passing

over the sun's north pole for about 8 days around occultation. The determina-

tion of coronal parameters actually depends on the assumption of a spherical-

ly symmetric model for the electron density distribution (different from the

Helios mission). Generally during sunspot maximum electron densities at high

(low) solar latitudes are greater (smaller) than those values existing for

sunspot minimum conditions (e.g. Hansen et al., 1969). To some extent the

general expectation seems to be confirmed for the Mariner model to have

greater (smaller) electron density values close to (farer away from) the sun

(p < 4; 4 < p < 70 R8}. On the other hand, it may be questionable whether or

not a latitudinal dependence of the electron density can be resolved from

Helios data.

3.5 Quasi-Stationary Corona

The set of Helios A electron content measurements on 3-7-75 (fig. 7a; sect. 3.1)

is taken to discuss some quasi-stationary features of the solar corona (time

scale: hours or days). Fig. 12 shows the isophotal map (height 1.5 R 0) for the

corresponding Carrinqton rotation no. 1625 and also 1626 covering most of the

entry phase of the first occultation (time runs from right to left). The glo-

bal structure of the corona is illustrated by three intensity levels of con-

tours- equivalent to constant electron densities of (5.5; 7.2; 8.9) x10 12 m 3.

None of the two brightness centers (oblique lines) approximately located at

solar longitudes 2500 (350 S) and 100' (300 N) was intercepted by the Helios

raypath indicated by a solid line from the ecliptic plane at 7 0 S (% constant

during both rotational periods). However, the Helios raypath did pass through

a pronounced, significant coronal hole (vertical lines) near the equator at

about 700 longitude. Quite different are large-scale, long-lived coronal hole

structures extending from northern and southern latitudes across the ecliptic

s	 plane around longitudes 250 and 1300 , respectively (sect. 3.3). In a rough

approximation now the following relationships can be established: On 3-7 (OOY

66) the elongation is about SEP 	 170 and the distance earth-Helios is 0.75 All

(i.e. the signals's roundtrip travel time equals 13 min) resulting in a PSE-

angle of 360 . This date of observation corresponds to a central meridian pas-

sage (CMP) date of 380 :13.20/d • 3 d earlier (DOY 63, solar longitude some

1800 ). As can be seen from fig. 12 this observational geometry relates to a
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coronal structure which looks just like a saddle point configuration, amidst a

broad band of low-leveled brightness (equivalent to electron densities of about

6x10 12 m-3) crossing the sun's equator between some 220 and 150' longitude.

Though in some respects it is hypothetical to extrapolate even quiet coronal

conditions from 1.5 Re to distances of 76 Re, this data set seems to be re-

lated to a time interval prevailing approximately (220 0- 1500)t13.20jd - 5 d

with a nearly uniform longitudinal distribution of coronal plasma within

the ecliptic plane; there is even a good deal of latitudinal homogeneity

around the Helios raypath. Thus, the linear increase of the electron con-

tent measured (6.3x1017 m-2 )  should mainly be due to the radial dependence

of such a quasi-stationary electron density distribution. The physical con-

cept of such an interpretation is experimentally supported by another set

of electron content data measured only two days earlier (DOY 64); this data

set looks quite similar to that discussed above.

From Helios A there is a total number of 13 sets of electron content measure-

meats (- 30 2 of all data sets) which also vary linearly with respect to time.

The correlation coefficients from a linear regression analysis are as high as

0.6 to 0.9 and even more (fig. 6a: 0.98). Most of these sets belong to the

early entry and the late exit phase of occultation. There was a preference for

the entry phase because of tracking coverage, noise problems, etc. Since Helios

B electron content measurements could be collected closer to the sun the per-

centage of such "linear" data sets is smaller.

In a first order approximation a linearized approach was developed to derive

a coronal parameter B from the slope of such data sets according to a den-

sity model like (2). For a physical model as simple as possible (to be des-

cribed by using just one parameter) the parameter B alone describes a purely

inverse quadratic law for a spherically symmetric electron density distribu-

tion. This "quadratic" coronal model is expected to hold for heliocentric

distances r > 4 R 6 setting A - 0 (no Helios electron content data sets were

obtained closer than p - 5.8 R 8 ). The parameter c f 0 means considerable
complications (analytical and numerical as well), if such an exponential para-

meter is to be derived only from electron content data (which is even true for

long arcs of range and Doppler data). Since physically the coronal parameter

e - c(r) accounts for the conservation of mass (time derivates neglected, i.e.

stationary flux density and flux) associated with a radially dependent velo-

city profile (e.g. Hundhausen, 1972), an approximation t - const . 0 may be

justified for the electron content measurements; linear slopes were observed



preferably at the beginning of the entry phase of occultation (p > 20 or 30 R8)

where the velocity is still nearly constant with respect to r (e.g. 400 km/s,

slowly decreasing towards occultation in those plasma regions around the ray-

path closest to the sun); the time interval to measure a data set is too short

(less than 8 h) to yield significant radial velocity variations from the geo-

metry of a Helios-like orbital configuration. Even from an analysis of months

of data arcs the e-values actually derived turned out to be small (c - 0.05/Ma-

riner 6; 0.2/Helios B, preliminary). Taking such a quadratic model corona and

neglecting refractive effects (fully consistent with the assumption A - 0)

- yields an analytical expression for the total, one-way electron content I

according to (1)

I	 I x 
P 

(arc cos E-- + arc cos P	 ,	 (6)
r  —	

r 

W 1 1; 	 p << rE, rP .

Heliocentric distances to earth and Helios are denoted by r E , rP in solar

radii, an a priori value B - 1.15x1012 
m-3  

(table 1) gives the order of

magnitude for I - B R6 - 8x1020 m 2 . The plus-sign (after perihelion) com-

bines the contributions to the electron content along the raypath from

the earth to the	 point of closest approach to the sun (heliocentric distan-

ce p) and from this point to the spacecraft. For small values of the impact

parameter p as typical for a solar occultation the electron content I

essentially depends on p only, i.e. variations of the electron content

(- integrated density) can be probed farer away from the sun than the

associated density variations. Assuming a quasi-stationary corona as out-

lined	 (B	 constant with respect to time) and referring to some reference

time to , the time variations of the electron content AI(t) - I(t) - I(t o) turn

out mainly to be due to the time variations of geometrical quantities like

p	 p(t) and rP - rP (t) which can be approximated for occultation as linear

functions of time with sufficient accuracy for observation 	 intervals no

longer than some hours (fE << tp, §). Truncation of a Taylor series expansion

in terms of powers of t - t o yields

fPo
p2AI (t) x B R8 [-n	 (t - to )	 (7)

po	 rPo

414
where dotted quantities mean differentiation with respect to time and index

0 refers to quantities for t - to (entry/exit phase: Al < 0). So only known

geometrical quantities are involved to derive the coronal parameter B from a



linear rate of change of electron content data. On the other hand, if sets

of electron content measurements show a time variation which is essentially

linear (whe.e the correlation coefficient is an appropriate criterion), then

the expectation is that something like a quadratic spatial decay may be a

useful approximate model for an electron density distribution to start with.

Fig. 13 shows a typical example for the diurnal variation of the electron

content as computed by using the exact relationship (6) for the Helios A

orbit on 3-6-75. Even on a full 24h- time scale the orbital geometry gives

no significant deviation from a linear slope. One day earlier and later

actual 3h- and 4h- data sets of electron content measurements could be ob-

tained (indicated by solid lines) with correlation coefficients for a linear

functional dependence as high as 0.98. The slopes of these data sets were

determined by a least squares fit to yield about 62x10 12 and 45x10
12 m 2s-1

(straight line in fig. 7a); a priori values of B yield some 6x10 12
 m 2s-1.

Owing to the high Helios SNR the uncertainty associated with these slopes

is as low as + 10 12 m 2s-1 ; the ionospheric influence is already corrected

for. For instance, according to (6) a preliminary value of 6.3x10 12 m 
3 
was

derived (3-7) for a coronal parameter B in terms of a quasi-stationary elec-

tron density distribution. In order to get an idea of the corresponding elec-

tron density at 76 R6 according to (2) this value can be used to give:

1.1x109 m 3 (e - 0); 3x108 (0.3; a priori); 1.3x108 (0.5; Scheffler, ElsRsser,

1974). The preliminary results for the coronal parameters from Helios B data

(table 2) yield 7.3x107 
m-3  

for the same distance.

It should be pointed out that so far these values are more formal. The elec-

tron content measurements from spacecraft Helios A and B indicate a distinct

day-to-day variation of the slope of those data sets linearly depending on

time. Thus, B-parameters derived by such a concept actually describe an over-

all, but essentially local coronal electron density distribution which is

thought to be quasi-stationary on a time scale of some hours. Certainly these

quasi-stationary B-parameters are different from the B-parameters as usually

derived from an analysis of all the radiometric data covering the entire period

of occultation. Generally it turns out from Helios data sets similar to fig. 7a

that the quasistationary B- and N-values associated only with local coronal re-

gions (p typically varies by about 0.3 R 8) are too high. Analysing radiometric

data from a long orbital arc results in parameters of a stationary corona

averaged on a time scale of months. Obviously it is necessary, e.g., to include

non-vanishing e-values (also supported by the high correlation with the coronal
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parameter B) to obtain realistic values for the electron density. However, this

means to extend the time scale of the data span and to include temporal varia-

tions of the electron content deviating from linear slopes. It is expected

that the parameter E cannot be determined on a quasi-stationary time scale,

i.e. the E-values should be taken as fixed. The question is being investigated

whether or not the discrepancies are fully due to the shorter averaging time

intervals for the quasi-stationary values.

An illustrative summary of Helios A electron content data as a function of time

around the first occultation is given by fig. 14. The variations of the elec-

tron content as measured per tracking pass are plotted in terms of a minimum,

maximum, and average (cross mark) value. As an example for the noise level the

error bar is given for DOY 100 s 4-10 (p - 16 R8 :	 z 2x10 17 m2). Not

all the passes are shown for the early entry phase; the data gaps around

occultation and at the beginning of the exit phase are obvious. As some

kind of a reference level the electron content is plotted as computed

(solid curves) from the Helios B stationary corona model (table 2) by

using (6); probably realistic uncertainty limits are indicated for the exit

phase by dotted curves. The computed values refer to a different scale with

the measured data atop, i.e. according to (1) the computed values are

thought to be an approximation for the unknown reference quantity I(t0)

associated with variations AI(t) generally at least about two orders of

magnitude below (DOY 100 : I(t0) - 1.3x1020 m 
2; 

AI(t) % 10 18 m 2 ). As

compared with the corresponding background values the order of magnitude

of the measured variations is on a level of some per cent or so. The dashed-

dotted curves show the electron density distribution N likewise derived

from the Helios B stationary corona model.

3.6 Special Events - Transient Phenomena

This preliminary analysis is completed by a brief discussion on two examples

of unusual data sets from the Helios electron content measurements.

The extraordinary feature of the Helios A electron content data set on 3-21-75

DOY 80 (fig. 7b; sect. 3.1) may roughly be related to the concurrent glo-

i'	 bal structure of the white light corona (fig. 12) as follows: Assuming the

strongest interference with the coronal plasma around the raypath's point

of closest approach (impact parameter p - 54 R 8 , elongation angle SEP - 150)

according to AI 	 I/p, one should look for an unusual coronal structure



approximately belonging to a CMP date of DOY 74 during Carrington rotation

no. 1625, i.e. (900-150):13.20/d . 6 d earlier. This is pretty close to the

pronounced coronal hole extending at some 70 0 longitude along the sun's

equator and intercepted by the Helios raypath as already illustrated. A more

detailed description is shown by fig. 15. On 3-21 the Helios A spacecraft

was situated about 250 beyond the west limb of the sun (in reference to the

sun-earth line). Around this date the longitudinal distribution of the equa-

torial K-coronal intensities is indicated and divided into sectors of uniform

angular width corresponding to the solar rotation on a day-to-day basis (130

longitude; CMP date relative to an earth-based observer) simplifying the

actual sectors of Archimedian type. As can be seen the 70 0-coronal hole (also

fig. 10) is really closest to the Helios raypath as compared with adjacent

structures of the inner corona. The total variation of the electron content

measured on a time scale of 2.7 h is AI - 1.4x10 18 m 2 , i.e. some 5 X with

reference to the order of magnitude of 2.6x10 19 m2 for the corresponding

background electron content approximated by using the Helios B model corona.

In addition to that preliminary discussions with experimenters from plasma

exp. no. 1 +) have shown that for electron content data sets of such kind

there might have been an interaction between the Helios raypath and the spiral

of a stream of high speed plasma originating from a coronal hole. A detailed

investigation is being carried out proving whether or not the effects measured

are in fact due to regions of compressed plasma formed at the leading edge of

a high speed stream (e.g. Hundhausen, 1972).

Fig. 16 refers to the phenomenon of plasma ejecta from a solar flare inter-

cepting the raypath of Helios B on 4-30/5-1-76 and recorded via differential

phase (DRVID) and phase residual (fully equivalent to each other) as an enor-

mous variation in electron content AI - 1.7x10 19 m_
2 
 with a maximum rate of

change of about 2.2x10 14 m 2 s-1 . The values of elongation and impact parame-

ter are 6.92 0 and 26.1 R8 , respectively, the latter decreasing by 0.8 R 6 within

the interval of observation. Taking the Helios B model corona an approximate

value of the background electron content may be 2.7x10 18 m2 at maximum, i.e.

only about 1/6 of the variation measured. During the first 4 h of this electron

content data set the noise is small and characteristic of reasonably quiet

solar conditions. The return of the data back to a background level is not

evident since the pass ended while the ejecta was still within the raypath;

the flare ejecta duration interecpting the raypath is in excess of 2.5 h.

+) private communication from Drs. R. Schwenn, M. Montgomery.
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So far the observed duration of enhanced columnar electron density in the

Helios-earth raypath at impact parameter of 26.1 R 6 may be interpreted in
either of two ways: 1. The flare-induced disturbance led to the continuous

outward streaming (as a fire hose) of a dense plasma for at least 2.5 h,

or alternatively 2. the flare ejection process itself was short-lived but

produced a plasma cloud having a wide range of speeds (at 26.1 R 6) varying
from a maximum of about 900 km/s (corresponding to the delay time of 402 min

for the leading edge) to a minimum of less than 660 km/s (correspon-

ding to the last Helios measurement at 652 min after rare onset).

A correlation with the optical emergence of the flare on the solar surface

gives an estimation of the flare ejects propagation speed (roughly assuming

radial direction). Table 3 gives an informative survey on earth-based ob-

servations referring to this solar flare and was provided by the Space Environ-

ment Services Center, Boulder. )

Table 3: Solar disturbance on 4-30-76

Optical flare, importance 2 bright

start 2048 UT, maximum 2114 UT

position S 90 , W 470 from CMP

Type III radio emission, large group,

importance 3+ (8-80 mHz)

2103 to * 2113 UT

Type II radio emission, % 2116 to 2125 UT

Type IV continuum, 2103 to > 2400 UT

Combined with the approximate location of the on-set of the flare in the

electron content data at 03:30 UT (fig. 15), 5-1-76 (i.e. implying a travel

time of 6 h 42 min), and a distance estimate of 31.3 R 8 from the flare posi-
tion on the solar surface to the radial intersection with the Helios B ray-

path, a preliminary value of the flare propagation speed may be inferred to

be v :^s 31.3 R6 A h 42 min = 900 km/s. At present it is hypothesized that the

t
	 sharp rise in the electron content data at 03:30 UT coincides with the

leading edge of flare ejects. Also the minor variation immediately preceding

the rapid rise may be an evidence for a shock front preceding the main body

also private communication from Dr. Dulk, UC Boulder.



of the flare ejecta (Hundhausen, 1972).

Some final remarks may be added as to the time variation of the Helios

electron content data. Because of the high ranging power of the Helios

spacecrafts the noise level of the electron content measurements is nearly

two orders of magnitude below that from Mariners 6, 7, 9 (e.g. Callahan,

1975). So even minor time variations of the electron content data become

distinguishable. Owing to the variable bandwidth of the Helios transponder

(5 Hz up to about 1.3 kHz) there are also no on-board limitations as to

the high frequency time resolution for the electron content data sets with

a Nyquist frequency of generally 4.2 mHz as given by the sampling theorem.

Obviously there are periodical structures in the data superimposed on the

linear increase (or decrease) and the transient behavior as well. So the

temporal variations of nearly half of the Helios A electron content measu-

rements consistently reveal significant periodicities within a frequency

range of about 0.2 (and even less) up to 3 mHz, for instance distinct fre-

quency peaks around, e.g., 0.35; 0.9; 2 mHz, preferably on successive days.

Work is in progress to extend a maximum entropy spectral and correlation

analysis (e.g. Chen, Stegen, 1974; Ulrych, Bishop, 1975) already initiated

for some Helios A electron content data sets. The question is being investi-

gated whether or not wavelike plasma structures due to preferred individLal

modes can be identified (Hollweg, 1975). On the other hand, the Helios elec-

tron content data are being analysed to describe the statistical fluctuations

in terms of power spectra especially as far as the slope is concerned as a

function of the impact parameter. An analysis towards high frequency scintil-

lations (e.g. Jokipii, 1973) is particularly qupported by using the phase

residual data type (sect. 3.2) with a higher Nyquist frequency (up to 50 mHz).

Improving the weighting scheme of range and Doppler data by proper noise

models is one aspect of application for such a statistical approach.

Finally, the information on the coronal electron density distribution ob-

tainable from a scientific analysis of this occultation experiment may be

useful to other Helios experiments such as measuring the zodiacal light

(exp. no. 9). It may be possible to analyse observations of the zodiacal light

closer to the sun (p < 10 R 8) with a higher reliability, if the scattering

effect due to the electrons can be corrected for, e.g. by using coronal mo-

dels like (2) with parameters actually representative for the in situ-measure-

ments during the Helios mission.

h
F
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4. Conclusions

Time delay occultation data of high quality were collected in 1975/76 from

the Helios A and B spacecraft as close to the sun as 3.1 R 6 (range) and 5.8 R6

(electron content), respectively; plasma effects could be measured directly as

far away from the sun as about 190 R 6 (before first inferior conjunction of He-

lios B). The Helios orbital geometry and the global structure of the corona du-

ring solar minimum conditions are especially in favor of remote probing the co-

ronal election density distribution (west and east limb as well) including the

outer and extended corona. From a preliminary data analysis steady-state and

dynamical features of the electron density distribution became obvious (time

scale of months/hours). Three coronal parameters for an average electron density

model (i.e. spatial decay in terms of inverse powers of the heliocentric

distance) are determined by a weighted least squares estimation to yield elec-

tron densities of e.g.: 1.3x10 11 ; 6.3x109 ; 1.4x109 ; 1x108 ; 4x107 ; 7x106
	 3

at distances 3; 10; 20; 65; 100; 215 R 8 . Electron content variations mainly

linear with respect to time are related to an inverse quadratic power law for

electron densities of a quasi-stationary corona. For typical electron content

data sets there are indications that correlations may be established with

earth-bound K-coronagraph measurements revealing long-lived, corotating coro-

nal structures. Two examples of transient plasma phenomena are discussed for

Helios electron content measurements on March 21, 1975, and April 30/May 1,

1976,as probably related with an equatorial coronal hole and the special

event of a solar flare. The latter is associated with an electron content

enhancement of about five times typical background values (at about 30 R0

distance from sun), the corresponding velocity of propagation for flare ejecta

turns out to be some 900 km/s. More detailed coronal structures are expected

to result from a correlative analysis of time delay data together with Fara-

day rotation data and Helios in s:tu-measurements.
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Fig. 15 Orbital geometry (sun-earth-Helios) and equatorial K-coronal inten-

sities (west limb) around 3-21-75 (Helios A)
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