1,566 research outputs found

    HLA DNA Typing and Transplantation

    Get PDF

    A Comparative Study of the Formation of Aromatics in Rich Methane Flames Doped by Unsaturated Compounds

    Full text link
    For a better modeling of the importance of the different channels leading to the first aromatic ring, we have compared the structures of laminar rich premixed methane flames doped with several unsaturated hydrocarbons: allene and propyne, because they are precursors of propargyl radicals which are well known as having an important role in forming benzene, 1,3-butadiene to put in evidence a possible production of benzene due to reactions of C4 compounds, and, finally, cyclopentene which is a source of cyclopentadienylmethylene radicals which in turn are expected to easily isomerizes to give benzene. These flames have been stabilized on a burner at a pressure of 6.7 kPa (50 Torr) using argon as dilutant, for equivalence ratios (?) from 1.55 to 1.79. A unique mechanism, including the formation and decomposition of benzene and toluene, has been used to model the oxidation of allene, propyne, 1,3 butadiene and cyclopentene. The main reaction pathways of aromatics formation have been derived from reaction rate and sensitivity analyses and have been compared for the three types of additives. These combined analyses and comparisons can only been performed when a unique mechanism is available for all the studied additives

    Strength Reduction in Electrical and Elastic Networks

    Full text link
    Particular aspects of problems ranging from dielectric breakdown to metal insu- lator transition can be studied using electrical o elastic networks. We present an expression for the mean breakdown strength of such networks.First, we intro- duce a method to evaluate the redistribution of current due to the removal of a finite number of elements from a hyper-cubic network of conducatances.It is used to determine the reduction of breakdown strength due to a fracture of size Îş\kappa.Numerical analysis is used to show that the analogous reduction due to random removal of elements from electrical and elastic networks follow a similar form.One possible application, namely the use of bone density as a diagnostic tools for osteorosporosis,is discussed.Comment: one compressed file includes: 9 PostScrpt figures and a text fil

    Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    Get PDF
    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts its effect by activating splenic F4/80+/CD11blow macrophages, which results in production of chemoprotective lysophosphatidylcholines (LPCs). Pharmacologic studies, together with analysis of expression patterns, identified GPR120 on F4/80+/CD11blow macrophages as the relevant receptor for 16:4(n-3). Studies that used splenocytes from GPR120-deficient mice have confirmed this conclusion. Activation of the 16:4(n-3)-GPR120 axis led to enhanced cPLA2 activity in these splenic macrophages and secretion of the resistance-inducing lipid mediator, lysophosphatidylcholine(24:1). These studies identify a novel and unexpected function for GPR120 and suggest that antagonists of this receptor might be effective agents to limit development of chemotherapy resistance.—Houthuijzen, J. M., Oosterom, I., Hudson, B. D., Hirasawa, A., Daenen, L. G. M., McLean, C. M., Hansen, S. V. F., van Jaarsveld, M. T. M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis

    Get PDF
    Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequ

    Using Nonlinear Response to Estimate the Strength of an Elastic Network

    Full text link
    Disordered networks of fragile elastic elements have been proposed as a model of inner porous regions of large bones [Gunaratne et.al., cond-mat/0009221, http://xyz.lanl.gov]. It is shown that the ratio Γ\Gamma of responses of such a network to static and periodic strain can be used to estimate its ultimate (or breaking) stress. Since bone fracture in older adults results from the weakening of porous bone, we discuss the possibility of using Γ\Gamma as a non-invasive diagnostic of osteoporotic bone.Comment: 4 pages, 4 figure

    Renormalized kinetic theory of classical fluids in and out of equilibrium

    Full text link
    We present a theory for the construction of renormalized kinetic equations to describe the dynamics of classical systems of particles in or out of equilibrium. A closed, self-consistent set of evolution equations is derived for the single-particle phase-space distribution function ff, the correlation function C=C=, the retarded and advanced density response functions χR,A=δf/δϕ\chi^{R,A}=\delta f/\delta\phi to an external potential ϕ\phi, and the associated memory functions ΣR,A,C\Sigma^{R,A,C}. The basis of the theory is an effective action functional Ω\Omega of external potentials ϕ\phi that contains all information about the dynamical properties of the system. In particular, its functional derivatives generate successively the single-particle phase-space density ff and all the correlation and density response functions, which are coupled through an infinite hierarchy of evolution equations. Traditional renormalization techniques are then used to perform the closure of the hierarchy through memory functions. The latter satisfy functional equations that can be used to devise systematic approximations. The present formulation can be equally regarded as (i) a generalization to dynamical problems of the density functional theory of fluids in equilibrium and (ii) as the classical mechanical counterpart of the theory of non-equilibrium Green's functions in quantum field theory. It unifies and encompasses previous results for classical Hamiltonian systems with any initial conditions. For equilibrium states, the theory reduces to the equilibrium memory function approach. For non-equilibrium fluids, popular closures (e.g. Landau, Boltzmann, Lenard-Balescu) are simply recovered and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose.and we discuss the correspondence with the seminal approaches of Martin-Siggia-Rose and of Rose.Comment: 63 pages, 10 figure

    A cosmological concordance model with dynamical vacuum term

    Get PDF
    We demonstrate that creation of dark-matter particles at a constant rate implies the existence of a cosmological term that decays linearly with the Hubble rate. We discuss the cosmological model that arises in this context and test it against observations of the first acoustic peak in the cosmic microwave background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa), the distance scale of baryonic acoustic oscillations (BAO) and the distribution of large scale structures (LSS). We show that a good concordance is obtained, albeit with a higher value of the present matter abundance than in the \Lambda CDM model. We also comment on general features of the CMB anisotropy spectrum and on the cosmic coincidence problem.Comment: Revised version. Accepted for publication in Physics Letters

    Bound State Inequality for High Mass Exchanges in a Scalar Field Model

    Full text link
    Ladder diagrams are relevant for the study of bound states. The condition upon the coupling strength for the existence of a bound state has been deduced in a scalar field theory for the case of low mass exchanges. We apply this approach to the case of very high mass exchanges.Comment: 14 pages, 3 figure
    • …
    corecore