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We demonstrate that creation of dark-matter particles at a constant rate implies the existence of a
cosmological term that decays linearly with the Hubble rate. We discuss the cosmological model that
arises in this context and test it against observations of the first acoustic peak in the cosmic microwave
background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa), the distance
scale of baryonic acoustic oscillations (BAO) and the distribution of large scale structures (LSS). We show
that a good concordance is obtained, albeit with a higher value of the present matter abundance than
in the �CDM model. We also comment on general features of the CMB anisotropy spectrum and on the
cosmic coincidence problem.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

The cosmological constant problem is usually described as a
huge difference between the vacuum energy density derived by
quantum field theories and the observed value of the cosmological
constant. The energy density associated to the vacuum fluctuations
of free fields is a divergent quantity, and any natural cutoff we
use to regularize it (for example, the Planck mass or the energy
scale of the quantum chromodynamics (QCD) phase transition, the
latest cosmological vacuum transition) leads to values many or-
ders of magnitude above the observed Λ. But the applicability
of flat-spacetime quantum field theory in the expanding universe
is doubtful, since a non-vanishing bare cosmological constant is
not compatible with a flat spacetime. The vacuum contribution to
(semi-classical) gravity is only properly calculated when one con-
siders a non-flat background and renormalizes the divergent con-
tributions in some appropriate way. This is a difficult task and, in
general, may depend on the renormalization method used. In the
simpler case of free conformal fields in a de Sitter spacetime [1],
the renormalized vacuum density is proportional to H4, where H
is the Hubble parameter. In the high-energy limit this result can be
used to obtain a non-singular cosmology, with an initial quasi-de
Sitter phase, giving origin to a subsequent radiation dominate pe-
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riod [2,3]. However, in the present universe the above result leads
to a very tiny vacuum term. On the other hand, it may well be
possible that the observed cosmological term is just a cosmologi-
cal constant of purely geometric nature. In this case there would
be no natural (micro-) physical scale associated to it. Furthermore,
both the gravitational action of the quantum vacuum and the ap-
proximate coincidence between such a constant and the present
matter density (the cosmic coincidence problem) would remain
unexplained.

As long as this issue cannot be solved on a fundamental level,
(semi-) phenomenological models which avoid the theoretical dif-
ficulties pointed out above may help to get further insight into the
problem. In this Letter we argue that, by modeling the cosmologi-
cal constant in terms of a decaying vacuum energy, it is possible to
obtain a model which is competitive with the standard one from
the observational point of view. A crucial point here is to consider
the contribution of interacting fields to the vacuum energy. Indeed,
some authors have been arguing that the energy density associated
to the QCD vacuum condensate in a low-energy de Sitter (or ap-
proximately de Sitter) spacetime is given by

Λ ≈ m3 H, (1)

where m ≈ 150 MeV is the energy scale of the QCD phase tran-
sition [4]. In the present universe this density is dominant when
compared to the contribution of free fields, H4, and has the cor-
rect order of magnitude of the observed cosmological term. In this
Letter we will trace back this scaling law Λ ∝ H to a process of
matter production in the expanding spacetime.
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2. Particle production and the vacuum density

Let us consider a low-energy, spatially flat Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetime, where non-relativistic dark
particles of mass M are created out of the vacuum at a constant
rate Γ . The particle number balance (sometimes called Boltzmann
equation) for this process will be given by

1

a3

d

dt

(
a3n

) = Γ n, (2)

where n is the particle number density at a given time. It can be
rewritten as

ρ̇m + 3Hρm = Γ ρm, (3)

where ρm = nM is the matter density. This equation is characteris-
tic of models with interaction in the dark sector [5–8].

This particle production from vacuum fluctuations necessarily
involves a gravitational backreaction. In addition to Eq. (3) we have
the Friedmann equation

ρ = ρm + Λ = 3H2, (4)

where Λ is the vacuum contribution to the energy density. We
shall assume pΛ = −Λ for the vacuum pressure, admitting, how-
ever, Λ to be time varying. The total energy density satisfies the
conservation equation

ρ̇ + 3H(ρ + p) = 0, (5)

provided we take Λ = 2Γ H + λ0, where λ0 is a constant of in-
tegration, which corresponds to a purely geometric cosmological
constant. Since there is no natural (microphysical) energy scale as-
sociated to this constant, it is disregarded here. In this way we
have

Λ = 2Γ H, (6)

and Eq. (5) can be rewritten as

ρ̇m + 3Hρm = −Λ̇. (7)

We can see that the particle creation is concomitant with a
decay in the vacuum energy density. Eq. (6) is the same time vari-
ation law (1) obtained in a quasi-de Sitter spacetime when the
contribution of the QCD condensate is taken into account [4]. In
this case we have Γ ≈ m3, where m is the energy scale of the
QCD phase transition.2 As discussed in [4], the association of the
QCD energy scale with the observed vacuum energy is natural and,
in some way, expected, since the QCD confinement, with breaking
of chiral symmetry, is the last cosmological vacuum transition we
know. The QCD condensate formed after this low energy transition
gives, in a de Sitter (or approximately de Sitter) spacetime, the
correct value of the cosmological term (see below). Furthermore,
owing to the maximal symmetry of the de Sitter background, the
condensate pressure is the negative of its energy density, i.e., the
same equation of state associated to a cosmological constant.

Dividing Eq. (6) by 3H2, using Λ/(3H2) ≡ 1 − Ωm and specify-
ing to the present time (subscripts 0), we obtain

Γ = 3

2
(1 − Ωm0)H0. (8)

In a de Sitter universe (Ωm = 0) we would have Γ = 3H/2. That
is, the particle creation rate would be equal (apart from a numer-
ical factor) to the Gibbons–Hawking temperature associated to the

2 We are using natural units with 8πG = c = h̄ = 1.
event horizon [9]. On the other hand, by taking Ωm0 ≈ 1/3 for our
present universe, we have H0 ≈ m3 and Λ ≈ m6. The former rela-
tion is an expression of the old Eddington–Dirac large number co-
incidence [10], while the latter (known as Zeldovich’s relation [11])
gives the correct order of magnitude for Λ. The exact value of Γ

in (8) (and hence of Λ0) will be given by observations in the next
sections. Once Γ is fixed, no further fine-tuning will be necessary.
The cosmological model to be built will have the same number of
free parameters as the �CDM model, namely Ωm0 and H0.

3. The model

From this section on we will analyze the cosmological model
arising from a vacuum energy density scaling with time in accor-
dance with the ansatz discussed above. When compared with the
most precise observational constraints, the model will show a very
good concordance and, in some cases, less tensions than in the
standard case. Therefore, besides providing a possible physical ba-
sis for the cosmological term, in the lines of the previous sections,
it will also show to be competitive from the observational point of
view.

With Λ = 2Γ H we obtain, from the Friedmann equations, the
solution [12,13]

H

H0
≈ {[

1 − Ωm0 + Ωm0(1 + z)3/2]2 + Ωr0(1 + z)4}1/2
, (9)

where Ωm0 is the present relative matter density, and we have
added conserved radiation with present density parameter Ωr0. As
discussed in [13–15], for non-zero Ωr0 the expression (9) is an
approximate solution, differing only 1% from the exact one, since
Ωr0 ≈ 8 × 10−5 � 1. For Ωr0 = 0, the solution (9) is exact.

For early times we obtain H2(z) = H2
0Ωr0z4, and the radiation

era is indistinguishable from the standard one. On the other hand,
for high redshifts the matter density scales as ρm(z) = 3H2

0Ω2
m0z3.

The extra factor Ωm0 – as compared to the �CDM model – is ow-
ing to the late-time process of matter production. In order to have
nowadays the same amount of matter, we need less matter in the
past. Or, in other words, if we have the same amount of matter
in the past (say, at the time of matter–radiation equality), this will
lead to more matter today. We can also see from (9) that, in the
asymptotic limit z → −1, the solution tends to the de Sitter solu-
tion.

Note that, like the �CDM model, the above model has only two
free parameters, namely Ωm0 and H0. On the other hand, it cannot
be reduced to the �CDM case except for z → −1. In this sense, it
is falsifiable, that is, it may be ruled out by observations.

4. Background tests

The Hubble function (9) is all we need to test the model against
observations of SNIa and BAO [13–15]. However, when testing the
position of the first peak of the CMB anisotropy spectrum, some
care is needed. The relation between the observed position of the
peak and the acoustic scale lA is given by [16]

l1 = lA(1 − δ1), where δ1 = 0.267

(
r

0.3

)0.1

, (10)

with r ≡ ρr/ρm evaluated at the redshift of last scattering zls . The
acoustic scale is defined, as usual, by

lA = π

zls∫
0

dz

H(z)

/ ∞∫
zls

cs

c

dz

H(z)
, (11)

with the sound velocity
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Fig. 1. Upper left panel: superposition of the confidence regions from SDSS (MLCS2k2) SNIa, BAO and the position of the first peak of the CMB in the present model [15].
Upper right panel: the same for the spatially flat �CDM. Lower panel: The corresponding likelihoods when h is marginalized.
cs = c

(
3 + 9

4

Ωb0

zΩγ 0

)−1/2

, (12)

where Ωb0 and Ωγ 0 stand for the present density parameters of
baryons and photons, respectively. The relation (10) does not de-
pend on the dark energy model, but only on pre-recombination
physics. However, the ratio r is, in our case, given by

r = Ωr0

Ω2
m0

zls, (13)

with the extra factor Ωm0 as compared to the �CDM expression.
Note that, in all the above expressions, there is a dependence on
H0 through the relative densities of baryons, photons and radi-
ation, as well as through the redshift of last scattering. In our
analysis we will fix these parameters (cs , Ωr0, zls) to the concor-
dance values of the standard model. The only free parameters to
be adjusted will then be Ωm0 and H0.
The result of a joint analysis of SNIa, BAO and the position
of the first peak of the CMB spectrum is shown in Fig. 1. In
the upper left panel we show the superposition of the corre-
sponding confidence regions in the (h, Ωm0) plane, where h =
H0/100 (km/s)/Mpc is the dimensionless Hubble constant. The
upper right panel shows the same for the �CDM model. In the
lower panel a comparison between the two models is made, after
marginalizing over h. In this analysis we have used the SDSS SNIa
compilation with the MLCS2k2 light-curve fitter [17]. Other cur-
rent compilations make use of Salt or Salt2 fitters which, however,
are not model independent. A more complete analysis, including
the Union2 and Constitution compilations, can be found in [15].
In the case of the Constitution sample calibrated with MLCS2k2,
the results are very similar to those presented here. Note that for
the standard model the relative matter density is higher than the
usually accepted concordance value (Ωm0 ≈ 0.27). This is a char-
acteristic of the MLCS2k2 fitter, also present when we use it to
calibrate the Constitution sample.
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Fig. 2. Left panel: the 2dFGRS power spectrum in the present model with Ωm0 = 0.45 (blue solid line) and for the BBKS transfer function with Ωm0 = 0.27 (red line). Right
panel: superposition of the four tests (SNIa, BAO, CMB and LSS) performed with the present model. The blue ellipse corresponds to the concordance region. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this Letter.)

Table 1
Limits to Ωm0 (SNe + CMB + BAO + LSS).

Test Λ(t)CDM �CDM

Ωm0
a χ2

min/ν Ωm0
a χ2

min/ν

Union2 (SALT2) . . . 0.420+0.009
−0.010 1.063 0.235 ± 0.011 1.027

SDSS (MLCS2k2) . . . 0.450+0.014
−0.010 0.842 0.260+0.013

−0.016 1.231

Constitution (MLCS2k2 [17]) . . . 0.450+0.008
−0.014 1.057 0.270 ± 0.013 1.384

a Error bars stand for 2σ .
5. The matter power spectrum

The analysis of the matter power spectrum was performed in
Ref. [18], where, for simplicity, baryons were not included and the
cosmological term was not perturbed. In a subsequent publication
a gauge-invariant analysis, explicitly considering the presence of
late-time non-adiabatic perturbations, has shown that the vacuum
perturbations are indeed negligible, except for scales near the hori-
zon [19]. Therefore, the result of Ref. [18] can be considered a good
approximation. An updated analysis is shown in the left panel of
Fig. 2, together with the 2dFGRS data points [20] and, for com-
parison, the concordance �CDM fitting as provided by the BBKS
transfer function [21]. It is also shown the 2σ confidence region
for our fitting.

6. Joint analysis

In the right panel of Fig. 2 we show the superposition of the 1σ
and 2σ confidence regions for the four tests we are considering
here (SNe Ia, BAO, first peak of CMB and LSS), as well as the con-
cordance ellipses of our joint analysis. The concordance value for
the matter density is 0.44 < Ωm0 < 0.46 (2σ ). The Hubble param-
eter is smaller than in other estimations, but it has the same value
obtained when the same SNIa sample is analyzed for the �CDM
model (see Fig. 1). In what concerns the matter density parameter,
it is about 10% higher than the flat standard model value for the
SDSS (MLCS2k2) compilation (Ωm0 ≈ 0.40). In both models the ob-
tained values of Ωm0 are higher than the usually accepted concor-
dance value for the flat �CDM model, and the same occurs when
one uses the Constitution sample calibrated with MLCS2k2. A dis-
cussion about the present tension between different SNIa samples
and fitters, in both models, can be found in [15]. Here we show,
in Table 1, the best-fit results for Ωm0 (with h marginalized) with
three samples of supernovas: the SDSS and Constitution calibrated
with the MLCS2k2 fitter, and the Union2 (which is calibrated with
SALT2). In Fig. 3, on the other hand, the reader can find the evo-
lution of the scale factor (left panel) and of the relative energy
densities of radiation, matter and dark energy (central and right
panels) in the two models.

The concordance value obtained for Ωm0 is in agreement with
estimates based on peculiar velocity measurements for galaxy pairs
[22], but only in marginal agreement with dynamical estimations
from clusters [23]. It is important to emphasize, however, that such
estimations are not very precise and that they involve a different
scale. Note also that the present result has an approximative char-
acter. As discussed in [18], the inclusion of baryons in the analysis
of the power spectrum may lead to a difference of about 10% in
the estimation of Ωm0.

With the concordance values of h and Ωm0 in hand, we can
obtain the age of the Universe, as well as the redshift of transition
between the decelerated and accelerated phases. They are given,
respectively, by [13]

H0t0 = 2 ln Ωm0

3(Ωm0 − 1)
, (14)

and

zT =
[

2

(
1 − 1

)]2/3

− 1. (15)

Ωm0



J.S. Alcaniz et al. / Physics Letters B 716 (2012) 165–170 169
Fig. 3. Left panel: The time evolution of the scale factor in the spatially flat �CDM and in the present model. Center panel: The density parameters of matter and dark energy
in both models. Right panel: The density parameters of matter and radiation in both models. In all cases we are using the best-fit values of Ωm0 from the SDSS analysis, and
the density parameters are defined as Ωi = ρi(z)/3H2(z).
This leads to H0t0 = 0.97 and zT = 0.81, in good agreement with
standard predictions and astronomical limits [24]. For h ≈ 0.7 we
have t0 ≈ 13.5 Gyr.

7. The CMB anisotropy spectrum

It is not easy to perform a full analysis of the CMB anisotropy
spectrum with alternative models, specially if it involves new pro-
cesses like particle production, for example. Nevertheless, for at
least some of the features we do not expect significant changes.
First of all, radiation and baryons are assumed to be separately
conserved (there is no photon fluctuations from the vacuum at the
tree level, and baryons are too heavy to be produced at late-times).
Therefore, the CMB temperature, the acoustic horizon at the last
scattering and the relative height of the peaks will not be affected.

On the other hand, the redshift of equality between matter and
radiation in our model is given by

zeq = Ω2
m0

Ωr0
, (16)

where we can note again an extra factor Ωm0 as compared to
the standard �CDM result. By using our concordance matter den-
sity Ωm0 = 0.45, we obtain zeq ≈ 2500, which does not differ too
much from the standard value. (This is simply because 0.25 = 0.52.
Therefore, a relative matter density of around 0.5 in the present
model leads to the same zeq of the standard model with Ωm ≈
0.25). For this same reason, the matter density at the time of
equality will be approximately the same in both models. [By the
way, this result for zeq guarantees that the turnover of the mat-
ter power spectrum is correctly placed (see Fig. 2 and [18]).] As
the redshift of last scattering is exactly the same [14], and the re-
combination does not depend on a particular dark energy model,
both last scattering and recombination will occur in the matter-
dominated phase. All these results indicate that the absolute height
of the peaks will not change either.3

3 In Ref. [25] the authors claim, by using an adapted version of CAMB, that a
good fitting for the CMB spectrum can be obtained with our concordance matter
density, Ωm0 ≈ 0.45 (see the left panel of their Fig. 3). On the other hand, they
claim that this density leads to a matter power spectrum in disagreement with LSS
data, contrary to what we have obtained in [18]. Our present results, however, agree
with those obtained previously in Ref. [18].
The only important consequence of matter production on the
CMB spectrum could be owing to the integrated Sachs–Wolf ef-
fect (ISW). In the right panel of Fig. 4 we plot the gravita-
tional potential k2Φ = ρma2δ/2 (δ is the matter density contrast
and k is the comoving wavenumber) as a function of the red-
shift, for the Einstein–de Sitter, �CDM and Λ(t)CDM models, for
k = 0.002h/Mpc. The ISW effect is proportional to the integrated
change of the gravitational potential. As the right panel of Fig. 4
shows, the slope of the potential of our model differs from the
corresponding slope of the �CDM model. But also here one may
expect this effect to be small. In the �CDM model the potential
decreases by 24% between the last scattering and the present time,
in our Λ(t) model it decreases by 20%. Note, however, that Fig. 4
is preliminary since it is based on a Newtonian analysis [18]. Here,
a more quantitative, fully relativistic analysis is necessary.

On the other hand, as can also be seen in Fig. 4, there is a small
difference in the gravitational potential as compared to the stan-
dard model, a difference that will affect the normalization of the
CMB spectrum, since the Sachs–Wolf effect is proportional to Φ .
But the gravitational potential is proportional to the matter density
contrast as well. Therefore, if the latter is correctly normalized (by
using, for example, the BBKS transfer function [21], as was done,
e.g., in [18] and in the left panel of Fig. 2), the CMB spectrum
will also have the correct normalization. In other words, in order
to have the correct normalization today, we have more power in
the CMB spectrum at high redshifts as compared to the standard
case.

8. The coincidence problem

The coincidence problem within the �CDM model is usually
phrased as: why ρm and Λ are of the same order of magnitude
just at the present epoch? Our model relies on dark-matter particle
production at a constant rate. From the outset, this rate is a free
parameter. By Eq. (8) it is assumed here to be of the order of the
Hubble constant. For our model the coincidence problem translates
into: why the rate Γ is of the order of the present-time Hubble
rate H0 (and not of the order of the Hubble rate at a different
time)? Any other value of Γ would not be compatible with the
observed cosmological dynamics.

Compared with the �CDM model, the coincidence problem
is alleviated, however, in the sense that Ωm/ΩΛ ∝ a−3/2 [19],
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Fig. 4. Left panel: the density contrast as a function of redshift for the Einstein–de Sitter solution (blue in the web version), the spatially flat �CDM model with Ωm = 0.27
(yellow in the web version) and the present model with Ωm = 0.45 (red in the web version), for the same initial condition δ ≈ 10−5 for z = 1100. Right panel: the
corresponding gravitational potential as a function of z, for k = 0.002 h/Mpc.
whereas in the �CDM model one has Ωm/ΩΛ ∝ a−3. Any decay
of the ratio Ωm/ΩΛ that is less than a−3 can be considered as an
alleviation of the coincidence problem [26].

This difference in the background dynamics also influences the
behavior of the perturbations. As the left panel of Fig. 4 shows,
the present model deviates from an Einstein–de Sitter universe al-
ready at higher redshifts than the �CDM model. Moreover, while
the perturbations within the latter approach a constant value for
decreasing z, in our model there appears a maximum around the
present epoch and perturbations are suppressed for z → −1.

9. Conclusions

The origin and nature of the dark sector is probably the cen-
tral theoretical problem of modern cosmology. The non-zero tiny
value of the cosmological term and its coincidence with the mat-
ter density are some important faces of the question. Relating dark
energy with vacuum fluctuations is an old difficulty, but one may
expect a potential solution if this problem is appropriately consid-
ered in curved spacetime. Several models of dynamic vacuum have
been suggested along these lines. Models for accelerated expansion
based on matter creation in the expanding background have pre-
viously been proposed, e.g., in [5,27]. Although a relation between
dynamical dark energy and particle production is not mandatory,
we think it represents an interesting option.

This Letter is based on the assumption that the late-time
spacetime expansion can extract non-relativistic particles from the
quantum vacuum. In the case of a constant creation rate, the back-
reaction of this process leads to a vacuum density linearly propor-
tional to the Hubble parameter, a result previously obtained from
estimations of the gravitational contribution of the QCD vacuum
condensate. The resulting cosmological model is shown to be in
accordance with the most precise observational tests, namely those
which involve SNIa, the anisotropy spectrum of the CMB, the LSS
distribution and BAO, albeit for higher values of the current mat-
ter density than in the standard model. Another difference to the
�CDM model may be a modified ISW effect. This will be a subject
of future research.
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