39 research outputs found

    Osseointegration of zirconia implants compared with titanium : an in vivo study

    Get PDF
    Background Titanium and titanium alloys are widely used for fabrication of dental implants. Since the material composition and the surface topography of a biomaterial play a fundamental role in osseointegration, various chemical and physical surface modifications have been developed to improve osseous healing. Zirconia-based implants were introduced into dental implantology as an altenative to titanium implants. Zirconia seems to be a suitable implant material because of its tooth-like colour, its mechanical properties and its biocompatibility. As the osseointegration of zirconia implants has not been extensively investigated, the aim of this study was to compare the osseous healing of zirconia implants with titanium implants which have a roughened surface but otherwise similar implant geometries. Methods Forty-eight zirconia and titanium implants were introduced into the tibia of 12 minipigs. After 1, 4 or 12 weeks, animals were sacrificed and specimens containing the implants were examined in terms of histological and ultrastructural techniques. Results Histological results showed direct bone contact on the zirconia and titanium surfaces. Bone implant contact as measured by histomorphometry was slightly better on titanium than on zirconia surfaces. However, a statistically significant difference between the two groups was not observed. Conclusion The results demonstrated that zirconia implants with modified surfaces result in an osseointegration which is comparable with that of titanium implants

    The Munich vulnerability study on affective disorders: microstructure of sleep in high-risk subjects

    Get PDF
    Vulnerability markers for affective disorders have focused on stress hormone regulation and sleep. Among rapid eye movement (REM) sleep, increased REM pressure and elevated REM density are promising candidates for vulnerability markers. Regarding nonREM sleep, a deficit in amount of and latency until slow wave sleep during the first half of the night is a characteristic for depression. To further elucidate whether changes in the microstructure of sleep may serve as vulnerability markers we investigated the premorbid sleep composition in 21 healthy high-risk proband (HRPs) with a positive family history for affective disorders and compared HRPs with a control group of healthy subjects (HCs) without personal and family history for psychiatric disorders. The sleep electroencephalogram (EEG) was conventionally scored and submitted to a quantitative EEG analysis. The main difference in sleep characteristics between HRPs and HCs was an abnormally increased REM density. Differences in the spectral composition of sleep EEG were restricted to an increased power in the sigma frequency range. Since the HRP group comprised six unrelated and 15 related subjects we controlled for sibling effects. We could replicate the increased REM density in the group of HRPs whereas elevated power in the low sigma frequencies persisted only with approaching significance. The present study further supports elevated REM density as putative vulnerability marker for affective disorders. However, sleep EEG in our group of HRPs did not show slow wave sleep abnormalities. Ongoing follow up investigations of HRPs will clarify whether the observed increase in sigma EEG activity during nonREM sleep is of clinical relevance with respect to the likelihood to develop an affective disorder

    European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing.

    Get PDF
    Summary Introduction There is an ongoing debate about the optimal use of metal-on-metal (MoM) bearings in total hip replacement, since there are uncertainties about local and systemic adverse effects due to wear and corrosion of these bearings. Despite various national recommendations, efforts to achieve international harmonization of specific evidence-based recommendations for best practice are still lacking. Hypothesis An international consensus study group should be able to develop recommendations on the use and monitoring of MoM bearings, preferably at the European level, through a multidisciplinary approach, by integrating the perspectives of various stakeholders. Materials and methods Twenty-one experts representing three stakeholder groups and eight countries participated in this European consensus study, which consisted of a consensus meeting, subsequent structured discussion, and consensus voting. Results The current statement defines first of all benefits, local and systemic risks, as well as uncertain issues related to MoM bearings. Safety assessment after implantation of MoM comprises all patients. A closer follow-up is recommended for large head MoM (≥ 36 mm) and resurfacing. In these implants basic follow-up should consist of x-rays and metal ion measurement of cobalt in whole blood, performed with GF-AAS or ICP-MS. Clinical and/or radiographic abnormality as well as elevated ion levels needs additional imaging (ultrasound, CT-scan and/or MARS-MRI). Cobalt values less than 2 μg/L are probably devoid of clinical concern, the threshold value for clinical concern is expected to be within the range of 2–7 μg/L. Discussion This is the first multinational, interdisciplinary, and multiprofessional approach for developing a recommendation for the use and monitoring of MoM bearings in total hip replacement. The current recommendations are in partial agreement with previous statements regarding the extent of follow-up and imaging techniques. They however differ from previous communications regarding measurement of metal ions and especially the investigated medium, technique, and eventual threshold levels. Level of evidence Level V, expert opinion/agreement conference

    UNICARagil – New architectures for disruptive vehicle concepts

    Get PDF
    This paper provides an overview of the research topics of the UNICARagil project with the focus on different architectures, such as the mechatronic, the software, and the mechanic architecture. The main research questions as well as possible solutions, which will be investigated in this project, are described. The project is funded by the Federal Ministry of Education and Research of Germany In terms of the mechatronic and the software architecture, this paper focuses on the ECU concept: the main tasks of the automated driving process are executed on three ECUs, which are called the cerebrum, the brainstem and the spinal cord. This architecture supports the modular approach regarding functional safety, the ability of future updates and upgrades, and the service orientated architecture (SOA) of the software. The well-known SOA approach is transferred to automotive applications and becomes the automotive service orientated architecture (ASOA). Furthermore, the mechanic structure of the four vehicles AUTOtaxi, AUTOelfe, AUTOliefer and AUTOshuttle is described

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    THE SIMULATION ROLE IN CONTEMPORARY DENTAL MEDICINE

    No full text
    The computerized programs have an unquestionable role in attaining high educational standards. Besides, they are efficient tools to identify the clinical case particularities as well as to evaluate them in accordance with the sum of clinico-biological indices specific to the clinical case. During the didactic process, the simulation has an essential role, as a preface to the practical procedures which train the practical abilities on each clinical entity in dental medicin

    The simulation role in contemporary dental medicine

    No full text
    Programele computerizate au un rol indiscutabil în atingerea unor standarde ridicate în procesul educațional. Pe de altă parte acestea sunt instrumente eficiente în identificarea particularităților cazurilor clinice, evaluarea acestora în conformitate cu indicii clinico-biologici specifici. În timpul procesului didactic, simularea are un rol esenţial, ca o prefaţă la procedurile practice care formează abilităţile practice pe fiecare entitate clinică în medicina dentară.The computerized programs have an unquestionable role in attaining high educational standards. Besides, they are efficient tools to identify the clinical case particularities as well as to evaluate them in accordance with the sum of clinico-biological indices specific to the clinical case. During the didactic process, the simulation has an essential role, as a preface to the practical procedures which train the practical abilities on each clinical entity in dental medicine
    corecore