48 research outputs found

    The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons?

    Get PDF
    In the majority of the literature on plasma shock waves, electrons play the role of "ghost particles," since their contribution to mass and momentum flows is negligible, and they have been treated as only taking care of the electric plasma neutrality. In some more recent papers, however, electrons play a new important role in the shock dynamics and thermodynamics, especially at the solar-wind termination shock. They react on the shock electric field in a very specific way, leading to suprathermal nonequilibrium distributions of the downstream electrons, which can be represented by a kappa distribution function. In this paper, we discuss why this anticipated hot electron population has not been seen by the plasma detectors of the Voyager spacecraft downstream of the solar-wind termination shock. We show that hot nonequilibrium electrons induce a strong negative electric charge-up of any spacecraft cruising through this downstream plasma environment. This charge reduces electron fluxes at the spacecraft detectors to nondetectable intensities. Furthermore, we show that the Debye length λDκ\lambda _{\mathrm D}^{\kappa} grows to values of about λDκ/λD106\lambda _{\mathrm D}^{\kappa}/\lambda _{\mathrm D}\simeq 10^{6} compared to the classical value λD\lambda _{\mathrm D} in this hot-electron environment. This unusual condition allows for the propagation of a certain type of electrostatic plasma waves that, at very large wavelengths, allow us to determine the effective temperature of the suprathermal electrons directly by means of the phase velocity of these waves. At moderate wavelengths, the electron-acoustic dispersion relation leads to nonpropagating oscillations with the ion-plasma frequency ωp\omega _{\mathrm p} , instead of the traditional electron plasma frequency.Comment: 6 pages, 2 figure

    Traveling solar-wind bulk-velocity fluctuations and their effects on electron heating in the inner heliosphere

    Full text link
    Ambient plasma electrons undergo strong heating in regions associated with compressive traveling interplanetary solar-wind bulk-velocity jumps due to their specific interactions with the jump-inherent electric fields. After thermalization of this energy gain per shock passage through the operation of the Buneman instability, strong electron heating occurs that substantially influences the radial electron temperature profile. We describe the reduction of the jump amplitude due to energy expended by the traveling jump structure. We consider three effects; namely energy loss due to heating of electrons, energy loss due to work done against the pick-up-ion pressure gradient, and an energy gain due to nonlinear jump steepening. Taking these effects into account, we show that the decrease in jump amplitude with solar distance is more pronounced when the initial jump amplitude is higher in the inner solar system. Independent of the initial jump amplitude, it eventually decreases with increasing distance to a value of the order of ΔU/U0.1\Delta U/U\simeq 0.1 at the position of the heliospheric termination shock, where ΔU\Delta U is the jump amplitude, and UU is the average solar-wind bulk velocity.The electron temperature, on the other hand, is strongly correlated with the initial jump amplitude, leading to electron temperatures between 6000 K and 20 000 K at distances beyond 50 AU. We compare our results with in-situ measurements of the electron-core temperature from the Ulysses spacecraft in the plane of the ecliptic for 1.5AUr5AU1.5\, \mathrm{AU}\leq r \leq 5\,\mathrm{AU}, where rr is the distance from the Sun. We find a very good agreement between our results and these observations, which corroborates our extrapolated predictions beyond r=5AUr=5\,\mathrm{AU}.Comment: 7 pages, 4 figures, accepted for publication in Astron. Astrophy

    Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA

    Full text link
    Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.

    Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first submission - omitted bibliograph

    Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.

    Forward Jet and Particle Production at HERA

    Get PDF
    Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross sections are presented as a function of Bjorken- x for forward jets produced with a polar angle to the proton direction, θ jet , in the range 7° < θ jet < 20°. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken- x , in the range 5° < θ < 25°, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution

    Diffractive dijet production at HERA

    Get PDF
    Interactions of the type ep -> eXY are studied, where the component X of the hadronic final state contains two jets and is well separated in rapidity from a leading baryonic system Y. Analyses are performed of both resolved and direct photoproduction and of deep-inelastic scattering with photon virtualities in the range 7.5 5 GeV relative to the photon direction in the rest frame of X. Models based on a factorisable diffractive exchange with a gluon dominated structure, evolved to a scale set by the transverse momentum p^hat_T of the outgoing partons from the hard interaction, give good descriptions of the data. Exclusive qqbar production, as calculated in perturbative QCD using the squared proton gluon density, represents at most a small fraction of the measured cross section. The compatibility of the data with a breaking of diffractive factorisation due to spectator interactions in resolved photoproduction is investigated
    corecore