46 research outputs found
Всеукраїнська наукова конференція «Х Костомарівські читання»
14-15 квітня 2011 р. Чернігівщина вже вкотре приймала учасників всеукраїнської наукової конференції «Костомарівські читання». Зусиллями її незмінних організаторів Юрія Пінчука, Сергія Лаєвського та Сергія Леп’явка, конференція стала доброю науковою традицією, а цього року ще й відсвяткувала свій перший ювілей, адже відбувалася вдесяте. Х Костомарівські читання були присвячені 390-й річниці перемоги у Хотинській битві, однак їхня тематика не обмежувалася власне війною та добою гетьмана П. Сагайдачного. Основною метою читань організатори вбачають: спілкування вчених-істориків «без краваток» для ознайомлення колег з новітніми дослідженнями, знахідками та ідеями в ділянці історії України доби козаччини; залучення чернігівських істориків до спілкування з провідними вченими з наукових центрів; ознайомлення дослідників з Черніговом та його історичною спадщиною
Creating patient value in glaucoma care
Purpose: The purpose of this paper is to explore in a specific hospital care process the applicability
in practice of the theories of quality costing and value chains.
Design/methodology/approach: In a retrospective case study an in-depth evaluation of the use of
a quality cost mode
SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors
Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis
Identification of overlapping but differential binding sites for the high-affinity CXCR3 antagonists NBI-74330
ABSTRACT CXC chemokine receptor CXCR3 and/or its main three ligands CXCL9, CXCL10, and CXCL11 are highly upregulated in a variety of diseases. As such, considerable efforts have been made to develop small-molecule receptor CXCR3 antagonists, yielding distinct chemical classes of antagonists blocking binding and/or function of CXCR3 chemokines. Although it is suggested that these compounds bind in an allosteric fashion, thus far no evidence has been provided regarding the molecular details of their interaction with CXCR3. Using site-directed mutagenesis complemented with in silico homology modeling, we report the binding modes of two high-affinity CXCR3 antagonists of distinct chemotypes: Here we show that NBI-74330 is anchored in the transmembrane minor pocket lined by helices 2 (W2.60, D2.63), 3 (F3.32), and 7 (S7.39, Y7.43), whereas VUF11211 extends from the minor pocket into the major pocket of the transmembrane domains, located between residues in helices 1 (Y1.39), 2 (W2.60), 3 (F3.32), 4 (D4.60), 6 (Y6.51), and 7 (S7.39, Y7.43). Mutation of these residues did not affect CXCL11 binding significantly, confirming the allosteric nature of the interaction of these small molecules with CXCR3. Moreover, the model derived from our in silico-guided studies fits well with the already published structure-activity relationship data on these ligands. Altogether, in this study, we show overlapping, yet different binding sites for two high-affinity CXCR3 antagonists, which offer new opportunities for the structure-based design of allosteric modulators for CXCR3
Optical control of the ?2-adrenergic receptor with opto-prop-2: A cis-active azobenzene analog of propranolol
In this study, we synthesized and evaluated new photoswitchable ligands for the beta-adrenergic receptors ?1-AR and ?2-AR, applying an azologization strategy to the first-generation beta-blocker propranolol. The resulting compounds (Opto-prop-1, -2, -3) have good photochemical properties with high levels of light-induced trans-cis isomerization (>94%) and good thermal stability (t1/2 > 10 days) of the resulting cis-isomer in an aqueous buffer. Upon illumination with 360-nm light to PSScis, large differences in binding affinities were observed for photoswitchable compounds at ?1-AR as well as ?2-AR. Notably, Opto-prop-2 (VUF17062) showed one of the largest optical shifts in binding affinities at the ?2-AR (587-fold, cis-active), as recorded so far for photoswitches of G protein-coupled receptors. We finally show the broad utility of Opto-prop-2 as a light-dependent competitive antagonist of the ?2-AR as shown with a conformational ?2-AR sensor, by the recruitment of downstream effector proteins and functional modulation of isolated adult rat cardiomyocytes
Why a successful task substitution in glaucoma care could not be transferred from a hospital setting to a primary care setting: A qualitative study
Background: Healthcare systems are challenged by a demand that exceeds available resources. One policy to meet this challenge is task substitution-transferring tasks to other professions and settings. Our study aimed to explore stakeholders' perceived feasibility of transferring hospital-based monitoring of stable glaucoma patients to primary care optometrists.Methods: A case study was undertaken in the Rotterdam Eye Hospital (REH) using semi-structured interviews and document reviews. They were inductively analysed using three implementation related theoretical perspectives: sociological theories on professionalism, management theories, and applied political analysis.Results: Currently it is not feasible to use primary care optometrists as substitutes for optometrists and ophthalmic technicians working in a hospital-based gl
Phenyldihydropyrazolones as Novel Lead Compounds Against Trypanosoma cruzi
As over 6 million people are infected with Chagas disease and only limited therapeutic options are available, there is an urgent need for novel drugs. The involvement of cyclic nucleotide phosphodiesterases (PDE) in the lifecycle and biological fitness of a number of protozoan parasites has been described and several of these enzymes are thought to be viable drug targets. Within this context, a PDE-focused library was screened for its ability to affect the viability of Trypanosoma cruzi parasites. 5-(3-(Benzyloxy)-4-methoxyphenyl)-2-isopropyl-4,4-dimethyl-2,4-dihydro-3H-pyrazol-3-one (4), previously reported as a human PDE4 inhibitor, was identified as a hit. Upon optimization on three positions of the phenylpyrazolone scaffold, 2-isopropyl-5-(4-methoxy-3-(pyridin-3-yl)phenyl)-4,4-dimethyl-2,4-dihydro-3H-pyrazol-3-one (34) proved to be the most active compound against intracellular forms of T. cruzi (pIC50 = 6.4) with a 100-fold selectivity with respect to toxicity toward human MRC-5 cells. Evaluation on different life stages and clinically relevant T. cruzi strains revealed that the phenylpyrazolones are not active against the bloodstream form of the Y strain but show submicromolar activity against the intracellular form of the Y- and Tulahuen strains as well as against the nitro-drug-resistant Colombiana strain. In vitro screening of phenylpyrazolones against TcrPDEB1, TcrPDEC, and TcrCYP51 showed that there was a poor correlation between enzyme inhibition and the observed phenotypic effect. Among the most potent compounds, both TcrCYP51 and non-TcrCYP51 inhibitors are identified, which were both equally able to inhibit T. cruzi in vitro