103 research outputs found

    Differing effects when using phenylephrine and norepinephrine to augment cerebral blood flow after traumatic brain injury in the immature brain

    Get PDF
    Low cerebral blood flow (CBF) states have been demonstrated in children early after traumatic brain injury (TBI), and have been correlated with poorer outcomes. Cerebral perfusion pressure (CPP) support following severe TBI is commonly implemented to correct cerebral hypoperfusion, but the efficacy of various vasopressors has not been determined. Sixteen 4-week-old female swine underwent nonimpact inertial brain injury in the sagittal plane. Intraparenchymal monitors were placed to measure intracranial pressure (ICP), CBF, brain tissue oxygen tension (PbtO(2)), and cerebral microdialysis 30 min to 6 h post-injury. One hour after injury, animals were randomized to receive either phenylephrine (PE) or norepinephrine (NE) infusions titrated to a CPP >70 mm Hg for 5 h. Animals were euthanized 6 h post-TBI, and brains were fixed and stained to assess regions of cell and axonal injury. After initiation of CPP augmentation with NE or PE infusions, there were no differences in ICP between the groups or over time. Animals receiving NE had higher PbtO(2) than those receiving PE (29.6±10.2 vs. 19.6±6.4 torr at 6 h post-injury, p<0.05). CBF increased similarly in both the NE and PE groups. CPP support with PE resulted in a greater reduction in metabolic crisis than with NE (lactate/pyruvate ratio 16.7±2.4 vs. 42.7±10.2 at 6 h post-injury, p<0.05). Augmentation of CPP to 70 mm Hg with PE resulted in significantly smaller cell injury volumes at 6 h post-injury than CPP support with NE (0.4% vs. 1.4%, p<0.05). Despite similar increases in CBF, CPP support with NE resulted in greater brain tissue oxygenation and hypoxic-ischemic injury than CPP support with PE. Future clinical studies comparing the effectiveness of various vasopressors for CPP support are warranted

    Critical Hysteresis from Random Anisotropy

    Get PDF
    Critical hysteresis in ferromagnets is investigated through a NN-component spin model with random anisotropies, more prevalent experimentally than the random fields used in most theoretical studies. Metastability, and the tensorial nature of anisotropy, dictate its physics. Generically, random field Ising criticality occurs, but other universality classes exist. In particular, proximity to O(N)\mathcal{O}(N) criticality may explain the discrepancy between experiment and earlier theories. The uniaxial anisotropy constant, which can be controlled in magnetostrictive materials by an applied stress, emerges as a natural tuning parameter.Comment: four pages, revtex4; minor corrections in the text and typos corrected (published version

    Surface and Image-Potential States on the MgB_2(0001) Surfaces

    Get PDF
    We present a self-consistent pseudopotential calculation of surface and image-potential states on MgB2(0001)MgB_2(0001) for both BB-terminated (BtB-t) and MgMg-terminated (MgtMg-t) surfaces. We find a variety of very clear surface and subsurface states as well as resonance image-potential states n=1,2 on both surfaces. The surface layer DOS at EFE_F is increased by 55% at BtB-t and by 90% at the MgtMg-t surface compared to DOS in the corresponding bulk layers.Comment: 3 pages, 6 figure

    Multi-k\vec{k} Configurations

    Full text link
    Using resonant x-ray scattering to perform diffraction experiments at the U M4_{4} edge novel reflections of the generic form have been observed in UAs$_{0.8}$Se$_{0.2}$ where $\vec{k} = $, with $k = {1/2}$ reciprocal lattice units, is the wave vector of the primary (magnetic) order parameter. The reflections, with 10410^{-4} of the magnetic intensities, cannot be explained on the basis of the primary order parameter within standard scattering theory. A full experimental characterisation of these reflections is presented including their energy, azimuthal and temperature dependencies. On this basis we establish that the reflections most likely arise from the electric dipole operator involving transitions between the core 3d and partially filled $5f$ states. The temperature dependence couples the peak to the triple-k\vec{k} region of the phase diagram: Below 50\sim 50 K, where previous studies have suggested a transition to a double-k\vec{k} state, the intensity of the is dramatically reduced. Whilst we are unable to give a definite explanation of how these novel reflections appear, this paper concludes with a discussion of possible ideas for these reflections in terms of the coherent superposition of the 3 primary (magnetic) order parameters

    Orbital ordering in the manganites: resonant x-ray scattering predictions at the manganese LII and LIII edges

    Get PDF
    It is proposed that the observation of orbital ordering in manganite materials should be possible at the L II and L III edges of manganese using x-ray resonant scattering. If performed, dipole selection rules would make the measurements much more direct than the disputed observations at the manganese K edge. They would yield specific information about the type and mechanism of the ordering not available at the K edge, as well as permitting the effects of orbital ordering and Jahn-Teller ordering to be detected and distinguished from one another. Predictions are presented based on atomic multiplet calculations, indicating distinctive dependence on energy, as well as on polarization and on the azimuthal angle around the scattering vector

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
    corecore