35 research outputs found

    Immunity against Ixodes scapularis Salivary Proteins Expressed within 24 Hours of Attachment Thwarts Tick Feeding and Impairs Borrelia Transmission

    Get PDF
    In North America, the black-legged tick, Ixodes scapularis, an obligate haematophagus arthropod, is a vector of several human pathogens including Borrelia burgdorferi, the Lyme disease agent. In this report, we show that the tick salivary gland transcriptome and proteome is dynamic and changes during the process of engorgement. We demonstrate, using a guinea pig model of I. scapularis feeding and B. burgdorferi transmission, that immunity directed against salivary proteins expressed in the first 24 h of tick attachment — and not later — is sufficient to evoke all the hallmarks of acquired tick-immunity, to thwart tick feeding and also to impair Borrelia transmission. Defining this subset of proteins will promote a mechanistic understanding of novel I. scapularis proteins critical for the initiation of tick feeding and for Borrelia transmission

    The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells

    No full text
    Accumulating evidence indicates that the CD4 homologue lymphocyte activation gene-3 (LAG-3) plays a down-regulatory role on T-cell responses. However, the role of LAG-3/major histocompatibility complex (MHC) class II interactions on primary human T-cell responses, as well as the mechanism by which down-regulation occurs, are not clear. Here, we show that LAG-3 colocalized with CD3, CD4 or CD8 in areas of cholesterol-rich raft aggregation during this primary response, as well as in the clustered raft region formed between T cells and antibody-coated beads. Addition of a blocking LAG-3-specific monoclonal antibody to both CD4 and CD8 primary resting T cells activated under conditions of antigen-presenting cell-driven stimulation and low antigen concentrations augments CD69 activation antigen expression, T-cell expansion and T helper 1 (Th1, but not Th2) cytokine production. Blocking LAG-3/MHC class II interactions leads to an increase in the number of cells entering division at these low concentrations of antigen and to more rounds of divisions with an accumulation of cells in the S-phase of the cell cycle. These results indicate that LAG-3 signalling inhibits early events in primary activation of human CD4 and CD8 T cells and further support a role for LAG-3 signalling in regulating the expansion of activated effector or memory T cells, either directly or indirectly through Treg suppressor activity

    LAG-3 (CD223) reduces macrophage and dendritic cell differentiation from monocyte precursors

    No full text
    Major histocompatibility complex (MHC) class II molecules expressed on monocytes may play a role in the control of differentiation of antigen-presenting cells. A soluble LAG-3 (CD223) molecule (sLAG-3) is a natural, high-affinity ligand for MHC class II. It is known to induce maturation of monocyte-derived dendritic cells in vitro and is used as a vaccine adjuvant to induce CD4 T helper type 1 responses and CD8 T-cell responses in vivo. Here, we demonstrate that sLAG-3 (but not an MHC class II-specific monoclonal antibody) reduces the differentiation of monocytes into macrophages in the presence of granulocyte–macrophage colony-stimulating factor (GM-CSF) as well as their differentiation into dendritic cells in the presence of GM-CSF and interleukin-4, as shown by a decrease in CD14 and CD1a expression, respectively. Dendritic cells derived from monocytes in the presence of sLAG-3 showed impaired antigen-presentation function, as assessed by the reduced capability to induce proliferation of T cells. Our results suggest that activated LAG-3(+) lymphocytes present at sites of inflammation may reduce the differentiation of monocytes into macrophages or fully competent antigen-presenting dendritic cells, thus limiting the magnitude of the ongoing T-cell immune responses

    Reinvigorating exhausted CD8 +

    No full text
    Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.Fil: Hossain, Md Amir. China Pharmaceutical University; ChinaFil: Liu, Guilai. China Pharmaceutical University; ChinaFil: Dai, Beiying. China Pharmaceutical University; ChinaFil: Si, Yaxuan. China Pharmaceutical University; ChinaFil: Yang, Qitao. China Pharmaceutical University; ChinaFil: Wazir, Junaid. China Pharmaceutical University; ChinaFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Yang, Yong. China Pharmaceutical University; Chin
    corecore