28 research outputs found

    Analytical and toxicological aspects of nanomaterials in different product groups: Challenges and opportunities

    Get PDF
    The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected

    Voltage-Gated Ion Channel Dysfunction Precedes Cardiomyopathy Development in the Dystrophic Heart

    Get PDF
    Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology.To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged.Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers

    Info-scavengers

    Get PDF
    Scavenger hunts are emergent collections, constructed out of small bits of information gathered by the players. As information scholars, we engage in scavenger hunts every day, whether researching ideas to formulate a paper, looking for the right regex pattern to parse a chunk of data, or integrating information into the correct ontology for a set of documents. We hope to illuminate this process in our everyday lives as students by revisiting the scavenger hunt for the world of us, the informavors [3]. We propose a scavenger hunt that takes place in and around the UCLA library. We intend to base some of the structure of the event on Jane McGonigal's work on Big Games [2]. Participants will engage the physical environment of UCLA campus in the access of information. Groups of 4 members will be given a set of 15 clues about different types of information that exist in a multiple spatiotemporal locations. In order to unlock their clues, groups will forage [4] and retrieve information using social and theoretical processes studied in the field. Information will include literary objects in the library, files "buried" in the web, and actual physical objects around the UCLA campus. In following with the berrypicking model of information retrieval [1], some clues will point to other clues, helping participants refine their search. Such clues interact with each other and need to be decoded in a certain order; however, all 15 clues will be given out at the same time. Groups will have 1 hour to gather all 15 clues, assemble them into the right order and unlock a final clue to win the game. As a technical requirement, teams will need access to UCLAs wireless network so they have access to the world wide web, where some of the clues will be located. Each team should have at least one laptop between them

    Transgenic systems for unequivocal identification of cardiac myocyte nuclei and analysis of cardiomyocyte cell cycle status

    No full text
    Even though the mammalian heart has been investigated for many years, there are still uncertainties in the fields of cardiac cell biology and regeneration with regard to exact fractions of cardiomyocytes (CMs) at different developmental stages, their plasticity after cardiac lesion and also their basal turnover rate. A main shortcoming is the accurate identification of CM and the demonstration of CM division. Therefore, an in vivo model taking advantage of a live reporter-based identification of CM nuclei and their cell cycle status is needed. In this technical report, we describe the generation and characterization of embryonic stem cells and transgenic mice expressing a fusion protein of human histone 2B and the red fluorescence protein mCherry under control of the CM specific alpha MHC promoter. This fluorescence label allows unequivocal identification and quantitation of CM nuclei and nuclearity in isolated cells and native tissue slices. In ventricles of adults, we determined a fraction of <20 % CMs and binucleation of 77-90 %, while in atria a CM fraction of 30 % and a binucleation index of 14 % were found. We combined this transgenic system with the CAG-eGFP-anillin transgene, which identifies cell division and established a novel screening assay for cell cycle-modifying substances in isolated, postnatal CMs. Our transgenic live reporter-based system enables reliable identification of CM nuclei and determination of CM fractions and nuclearity in heart tissue. In combination with CAG-eGFP-anillin-mice, the cell cycle status of CMs can be monitored in detail enabling screening for proliferation-inducing substances in vitro and in vivo

    Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells.

    Get PDF
    The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca(2+) imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca(2+) response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca(2+) signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses

    TCR/CD3- and CD59-mediated Ca<sup>2+</sup> signaling are dependent on Lck and LAT.

    No full text
    <p>Cluster distribution of Ca<sup>2+</sup> time traces in differently treated cells upon anti-CD3 and anti-CD59 stimulation. Each color represents the percentage of a certain Ca<sup>2+</sup> time trace cluster in the cell population. (A) Ca<sup>2+</sup> measurements were performed with WT cells transiently transfected with negative control siRNA (siNeg), Lck-specific siRNA (siLck), WT cells treated with 10 µM PP2 (PP2), and Lck-deficient J.CaM1.6 cells. Clusters representing Ca<sup>2+</sup> release patterns are framed in black (89.4±10.1%, 76.5±10.4%, 28.3±39.1%, and 23.4±9.9% upon anti-CD3 stimulation, 36.9±13.2%, 12.7±6.1%, 2.6±2.0%, and 1.2±1.2% upon anti-CD59 stimulation for siNeg, siLck, PP2-treated, and J.CaM1.6 cells, respectively). Mean values from at least two independent experiments, each with three technical replicates, are shown (n ≥ 204 per cell type and condition). (B) Cluster analysis of Ca<sup>2+</sup> time traces in WT cells transiently transfected with negative control siRNA (siNeg), LAT-specific siRNA (siLAT), and LAT-deficient J.CaM2.5 cells. Clusters representing Ca<sup>2+</sup> release patterns are framed in black (89.4±10.1%, 73.5±5.8%, and 3.0±2.3% upon anti-CD3 stimulation, 36.9±13.2%, 13.0±6.6%, and 1.7±1.6% upon anti-CD59 stimulation for siNeg, siLAT, and J.CaM2.5 cells, respectively). Mean values from at least three independent experiments, each with three technical replicates, are shown (n ≥ 208 per cell type and condition). Multiple comparison tests for the fractions showing Ca<sup>2+</sup> release patterns in (A) and (B) were assessed by one-way ANOVA, significances are shown where applicable, ** p < 0.01, *** p < 0.001. (C) Knock-down of target proteins was tested by Western blotting. 48 h after transfection cell lysates from siRNA treated cells were probed with anti-Lck, anti-LAT, and anti-β-actin. J.CaM1.6 cells, J.CaM2.5 cells, and WT cells served as controls.</p

    CD59-mediated Ca<sup>2+</sup> signaling requires CD3ζ expression.

    No full text
    <p>(A) Cluster distribution of Ca<sup>2+</sup> time traces in WT and TCR<sup>high</sup> cells is shown upon anti-CD3 and anti-CD59 stimulation. Each color represents the percentage of a certain Ca<sup>2+</sup> time trace cluster in the cell population. Clusters representing Ca<sup>2+</sup> release patterns are framed in black (91.4±2.1% and 92.9±3.9% upon anti-CD3 stimulation, 34.4±16.3% and 72.0±16.6% upon anti-CD59 stimulation in WT and TCR<sup>high</sup> cells, respectively). Mean values from two independent experiments, each with three technical replicates are shown (n ≥ 167 per cell type and condition). (B) Cluster distribution of Ca<sup>2+</sup> time traces in WT, TCR<sup>-</sup>, and cells expressing CD8-ζ fusion protein is shown upon anti-CD3 and anti-CD59 stimulation. Each color represents the percentage of a certain Ca<sup>2+</sup> time trace cluster in the cell population. Clusters representing Ca<sup>2+</sup> release patterns are framed in black (90.1±1.4%, 1.9±0.7% and 7.4±2.3% upon anti-CD3 stimulation, 25.2±6.8%, 1.6±0.4% and 13.4±1.6% upon anti-CD59 stimulation for WT, TCR<sup>-</sup>, and CD8-ζ cells, respectively). Mean values from four independent experiments, each with three technical replicates, are shown (n ≥ 343 per cell type and condition). Multiple comparison tests for the fractions showing Ca<sup>2+</sup> release patterns in (A) and (B) were assessed by one-way ANOVA, significances are shown where applicable, * p < 0.05, ** p < 0.01, *** p < 0.001.</p
    corecore