36 research outputs found

    The resonance triplet at E_alpha = 4.5 MeV in the 40Ca(alpha,gamma)44Ti reaction

    Full text link
    The 40Ca(alpha,gamma)44Ti reaction is believed to be the main production channel for the radioactive nuclide 44Ti in core-collapse supernovae. Radiation from decaying 44Ti has been observed so far for two supernova remnants, and a precise knowledge of the 44Ti production rate may help improve supernova models. The 40Ca(alpha,gamma)44Ti astrophysical reaction rate is determined by a number of narrow resonances. Here, the resonance triplet at E_alpha = 4497, 4510, and 4523 keV is studied both by activation, using an underground laboratory for the gamma counting, and by in-beam gamma spectrometry. The target properties are determined by elastic recoil detection analysis and by nuclear reactions. The strengths of the three resonances are determined to omega gamma = (0.92+-0.20), (6.2+-0.5), and (1.32+-0.24) eV, respectively, a factor of two more precise than before. The strengths of this resonance triplet may be used in future works as a point of reference. In addition, the present new data directly affect the astrophysical reaction rate at relatively high temperatures, above 3.5 GK.Comment: 12 pages, 11 figures; submitted to Phys. Rev.

    Resonance strengths in the 14N(p, \gamma)15O and 15N(p, \alpha \gamma)12C reactions

    Full text link
    The 14N(p, \gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p, \alpha \gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p, \gamma)15O and 15N(p, \alpha \gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p, \gamma)15O and at Ep = 897 and 430 keV in 15N(p, \alpha \gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p, \gamma)15O. The new recommended values are \omega \gamma = 0.353±\pm0.018, 362±\pm20, and 21.9±\pm1.0 eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p, \gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resonant capture in the 14N(p, \gamma)15O reaction that are needed for an improved R-matrix extrapolation of the cross section. In addition, the data on the 430 keV resonance in 15N(p, \alpha \gamma)12C may be useful for hydrogen depth profiling.Comment: 10 pages, 8 figures. Corrected typos in the abstract, table IV made more comprehensible. As accepted in Phys.Rev.

    Inelastic scattering of fast neutrons from 56

    Full text link
    The inelastic scattering of fast neutrons on 56Fe was investigated in different manners at the neutron time-of-flight facility nELBE. The scattering cross section was determined via the measurement of the γ-ray production and by means of a kinematically complete double time-of-flight method. In a further measurement the γ-ray angular distribution was determined to correct the measured cross sections for anisotropy. The resulting inelastic scattering cross section determined from the photo production cross sections is in very good agreement with evaluations and previous measurements. In contrast, the result of the double time-of-flight measurement is about 10% lower than these data, giving a hint to neutron-γ-ray angular correlations in the process of inelastic neutron scattering

    The n ELBE ( n ,fis) experiment

    No full text
    Simulations of the n ELBE 235 U and 242 Pu parallel plate fission ionization chambers are presented using finite element methods and extensive G EANT 4 simulations. The homogeneity of the electrical field was improved and the op- timal amount of target material determined. Pile-up effects due to the high activity of the plutonium targets have been considered in a realistic geometry

    Fast neutron measurements at the nELBE time-of-flight facility

    No full text
    The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits

    Fast neutron measurements at the nELBE time-of-flight facility

    No full text
    The compact neutron-time-of-flight facility nELBE at the superconducting electron accelerator ELBE of Helmholtz-Zentrum Dresden-Rossendorf has been rebuilt. A new enlarged experimental hall with a flight path of up to 10 m is available for neutron time-of-flight experiments in the fast energy range from about 50 keV to 10 MeV. nELBE is intended to deliver nuclear data of fast neutron nuclear interactions e.g. for the transmutation of nuclear waste and improvement of neutron physical simulations of innovative nuclear systems. The experimental programme consists of transmission measurements of neutron total cross sections, elastic and inelastic scattering cross section measurements, and neutron induced fission cross sections. The inelastic scattering to the first few excited states in 56Fe was investigated by measuring the gamma production cross section with an HPGe detector. The neutron induced fission of 242Pu was studied using fast ionisation chambers with large homogeneous actinide deposits

    Dipole strength in 80Se for s process and nuclear transmutation of 79Se

    Get PDF
    The dipole strength distribution of Se-80 was studied in a photon-scattering experiment by using bremsstrahlung produced with an electron beam of energy 11.5 MeV at the linear accelerator ELBE. We identified 180 gamma transitions up to an energy of 9.6 MeV, and analyzed the strength in the quasicontinuum of the spectrum. Simulations of statistical gamma-ray cascades were performed to estimate intensities of inelastic transitions and to correct the intensities of the ground-state transitions for their branching ratios. The photoabsorption cross section below the neutron-separation energy derived in this way was combined with the photoabsorption cross section obtained from an earlier (gamma,n) experiment and used as an input for the calculation of Se-79(n,gamma) reaction rates on the basis of the statistical reaction model

    Investigation of dipole strength up to the neutron separation energy at

    No full text
    The bremsstrahlung facility at the ELBE accelerator offers the possibility to investigate dipole strength distributions up to the neutron-separation energies with photon up to 16 MeV in energy. The facility and various results for nuclides measured during recent years are presented. One example is the study of the N = 80 nuclide 136Ba. The other presented example is the study of the chain of xenon isotopes from N = 70 to N = 80 which aimed to investigate the influence of nuclear deformation an neutron excess on the dipole strength in the pygmy region. An overview of the analysis is given. GEANT4 simulations were performed to determine the non-nuclear background that has to be removed from the measured spectra. This opens up the possibility to take into account also the strength of unresolved transitions. Simulations of gamma-ray cascades were carried out that consider the transitions from states in the quasi-continuum and allow us to estimate their branching ratios. As a result, the photoabsorption cross sections obtained from corrected intensities of groundstate transitions are compared with theoretical predictions and results within the chain of isotopes. With the help of the measured dipole distribution it is possible to describe gamma-ray spectra following neutron capture more precisely
    corecore