The 40Ca(alpha,gamma)44Ti reaction is believed to be the main production
channel for the radioactive nuclide 44Ti in core-collapse supernovae. Radiation
from decaying 44Ti has been observed so far for two supernova remnants, and a
precise knowledge of the 44Ti production rate may help improve supernova
models. The 40Ca(alpha,gamma)44Ti astrophysical reaction rate is determined by
a number of narrow resonances. Here, the resonance triplet at E_alpha = 4497,
4510, and 4523 keV is studied both by activation, using an underground
laboratory for the gamma counting, and by in-beam gamma spectrometry. The
target properties are determined by elastic recoil detection analysis and by
nuclear reactions. The strengths of the three resonances are determined to
omega gamma = (0.92+-0.20), (6.2+-0.5), and (1.32+-0.24) eV, respectively, a
factor of two more precise than before. The strengths of this resonance triplet
may be used in future works as a point of reference. In addition, the present
new data directly affect the astrophysical reaction rate at relatively high
temperatures, above 3.5 GK.Comment: 12 pages, 11 figures; submitted to Phys. Rev.