20 research outputs found

    Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors

    Get PDF
    The majority of human cancers harbour mutations promoting activation of the Akt protein kinase, and Akt inhibitors are being evaluated in clinical trials. An important question concerns the understanding of the innate mechanisms that confer resistance of tumour cells to Akt inhibitors. SGK (serum- and glucocorticoid-regulated kinase) is closely related to Akt and controlled by identical upstream regulators {PI3K (phosphoinositide 3-kinase), PDK1 (phosphoinositide-dependent kinase 1) and mTORC2 [mTOR (mammalian target of rapamycin) complex 2]}. Mutations that trigger activation of Akt would also stimulate SGK. Moreover, Akt and SGK possess analogous substrate specificities and are likely to phosphorylate overlapping substrates to promote proliferation. To investigate whether cancers possessing high SGK activity could possess innate resistance to Akt-specific inhibitors (that do not target SGK), we analysed SGK levels and sensitivity of a panel of breast cancer cells towards two distinct Akt inhibitors currently in clinical trials (AZD5363 and MK-2206). This revealed a number of Akt-inhibitor-resistant lines displaying markedly elevated SGK1 that also exhibited significant phosphorylation of the SGK1 substrate NDRG1 [N-Myc (neuroblastoma-derived Myc) downstream-regulated gene 1]. In contrast, most Akt-inhibitor-sensitive cell lines displayed low/undetectable levels of SGK1. Intriguingly, despite low SGK1 levels, several Akt-inhibitor-sensitive cells showed marked NDRG1 phosphorylation that was, unlike in the resistant cells, suppressed by Akt inhibitors. SGK1 knockdown markedly reduced proliferation of Akt-inhibitor-resistant, but not -sensitive, cells. Furthermore, treatment of Akt-inhibitor-resistant cells with an mTOR inhibitor suppressed proliferation and led to inhibition of SGK1. The results of the present study suggest that monitoring SGK1 levels as well as responses of NDRG1 phosphorylation to Akt inhibitor administration could have a use in predicting the sensitivity of tumours to compounds that target Akt. Our findings highlight the therapeutic potential that SGK inhibitors or dual Akt/SGK inhibitors might have for treatment of cancers displaying elevated SGK activity

    TROPION-Breast03: a randomized phase III global trial of datopotamab deruxtecan ± durvalumab in patients with triple-negative breast cancer and residual invasive disease at surgical resection after neoadjuvant therapy

    No full text
    Background: Despite advances in the treatment of early triple-negative breast cancer (TNBC), patients with residual invasive disease after neoadjuvant therapy have a high risk of disease recurrence and worse survival outcomes than those who have pathological complete response (pCR). Improving outcomes in early TNBC remains an unmet need requiring new adjuvant treatment approaches. Datopotamab deruxtecan (Dato-DXd) is an antibody–drug conjugate comprising a humanized anti-trophoblast cell-surface antigen 2 immunoglobulin G1 (IgG1) monoclonal antibody attached via a plasma-stable, cleavable linker to a potent topoisomerase I inhibitor payload, with activity observed in advanced TNBC. Objectives: TROPION-Breast03 is an ongoing phase III study evaluating the efficacy and safety of Dato-DXd alone or combined with durvalumab versus standard-of-care therapy as adjuvant treatment in patients with stage I–III TNBC with residual invasive disease at surgical resection following neoadjuvant treatment. Methods and design: Eligible patients, aged ⩾18 years, will be randomized in a 2:1:2 ratio to receive Dato-DXd [6 mg/kg intravenously (IV) every 3 weeks (Q3W); eight cycles] and durvalumab (1120 mg IV Q3W; nine cycles), Dato-DXd monotherapy (6 mg/kg IV Q3W), or investigator’s choice of therapy (ICT; capecitabine, pembrolizumab, or capecitabine and pembrolizumab). The primary endpoint is invasive disease-free survival (iDFS) for Dato-DXd and durvalumab versus ICT. Key secondary endpoints include safety, distant disease-free survival, and overall survival for Dato-DXd and durvalumab versus ICT and iDFS for Dato-DXd monotherapy versus ICT. Ethics: TROPION-Breast03 will be approved by the independent ethics committees or institutional review boards at each study site. All study participants will provide written informed consent. Discussion: TROPION-Breast03 will help define the potential role of Dato-DXd in the treatment of patients with early-stage TNBC who do not have pCR after neoadjuvant therapy. Trial registration: ClinicalTrials.gov identifier: NCT05629585 (registration date: 29 November 2022)

    Identification of environmental factors controlling wine quality: A case study in Saint-Emilion Grand Cru appellation, France

    No full text
    International audienceSoil is a key component of the terroir concept for wine production. Indeed, the soil provides water and nutrients to the vine plants depending on its properties and environmental conditions. A part of the complexity in the pro- duction of high-quality wines is the adaptation of the winegrowing practices to soil conditions variability in space and time. Then, a deep understanding of the environmental conditions that modulate soil-plant system function- ing and control the production of quality wine is crucial for future global change adaptation. This study aimed to identify environmental factors controlling red wine quality by merging both winemaker and scientist knowledge. This work was performed on a vineyard in Saint-Emilion Grand Cru appellation, France. First, we conducted field investigations for micro-terroir scale soil mapping in 2017, based on pedological prospections (pits and auger borings) and both water table levels and main meteorological parameters monitoring (from November 2017 to November 2018). Additionally, we collected for each vineyard plot the corresponding wine quality rank established each year since 2012 and based on wine tasting sessions supervised by the winemakers. Subse- quently we investigated both nutrients and water availability for the vine. This was achieved through correlative analysis using soil description, roots observation and water table level, stratified according to both soil functional units and wine quality ranks maps. Results show that the water table dynamic and the soil texture have a major impact on the root pattern of vines. Our study suggests that explanatory factors for wine quality are interactions between soil-water and roots during vine crop season. Here, best soils for fine wines could be observed for both non-severe water deficit and no-limited nutrient conditions
    corecore