2,501 research outputs found
A fault-tolerant multiprocessor architecture for aircraft, volume 1
A fault-tolerant multiprocessor architecture is reported. This architecture, together with a comprehensive information system architecture, has important potential for future aircraft applications. A preliminary definition and assessment of a suitable multiprocessor architecture for such applications is developed
Recommended from our members
Towards Intelligent Dynamic Deployment of Mobile Sensors in Complex Resource-Bounded Environments
Decision-making in the face of uncertainty requires an understanding of the probabilistic mechanisms that govern the complex behavior of these systems. This issue applies to many domains: financial investments, disease control, military planning and homeland security. In each of these areas, there is a practical need for efficient resource-bounded reasoning capabilities to support optimal decision-making. Specifically, given a highly complex system, with numerous random variables and their dynamic interactions, how do we monitor such a system and detect crucial events that might impact our decision making process? More importantly, how do we perform this reasoning efficiently--to an acceptable degree of accuracy in real time--when there are only limited computational power and sensory capabilities? These questions encapsulate nontrivial key issues faced by many high-profile Laboratory missions: the problem of efficient inference and dynamic sensor deployment for risk/uncertainty reduction. By leveraging solid ideas such as system decomposition into loosely coupled subsystems and smart resource allocation among these subsystems, we can parallelize inference and data acquisition for faster and improved computational performance. In this report, we propose technical approaches for developing algorithmic tools to enable future scientific and engineering endeavors to better achieve the optimal use of limited resources for maximal return of information on a complex system. The result of the proposed research effort will be an efficient reasoning framework that would enable mobile sensors to work collaboratively as teams of adaptive and responsive agents, whose joint goal is to gather useful information that would assist in the inference process
CMV-specific T-cells Mobilized with Exercise have Broad Epitope Specificity and a High-Differentiated Effector Memory Phenotype.
Introduction: Dynamic exercise evokes a rapid redeployment of cytotoxic T-cell subsets with high surface expression of b2 adrenergic receptors, presumably to enhance immunosurveillance during acute stress. As this response is affected by age and infection history, the main aim of this study was to examine latent CMV infection as a potential confounder to age-related differences in blood CD8+ T-cell responses to exercise. The second aim of this study was to examine the impact of acute exercise on the mobilization of CMV-specific T-cells in the peripheral blood compartment. Methods: Healthy young (n=16) and older (n=16) humans counterbalanced by CMV IgG serostatus (positive or negative) exercised for 30-minutes at ~80% peak cycling power. Isolated blood lymphocytes phenotypes were assessed by flow cytometry and Enzyme-linked immunospot (ELISPOT) analysis was used to determine the frequency and function of T-cells secreting IFN-g in response to CMV antigens. Maximum likelihood linear mixed models (LMM) were used to determine main effects of exercise (pre, post and 1h post-exercise), age (young or old) and CMV status (positive or negative) on total numbers of blood lymphocytes and their subsets. Results: Those with CMV redeployed ~2 times more CD8+ T-cells and ~6-times more KLRG1+/CD28- and CD45RA+/CCR7- CD8+ subsets than non-infected exercisers. Seronegative older exercisers had an impaired redeployment of total CD8+ T-cells, CD45RA+/CCR7+ and (KLRG1-/CD28+) CD8+ subsets. Redeployed CD8+ T-cell numbers were similar between infected young and old. CMVpp65 specific CD8+ cells in HLA/A2* subjects increased ~2.7 fold after exercise, a response that was driven by the KLRG1+/CD28-/CD8+ subset. Stimulating PBMCs before and after exercise with CMVpp65 and CMV IE-1 antigens and overlapping peptide pools revealed a 2.1 and 4.4 fold increases in CMVpp65 and CMV IE-1 IFN-g secreting cells respectively. The breadth of the T cell response was maintained after exercise with the magnitude of the response being amplified across the entire epitope repertoire. Conclusion: We conclude that latent CMV infection overrides age-related impairments in CD8+ T-cell redeployment with exercise. We also show for the first time that many T-cells redeployed with exercise are specific to CMVpp65 and CMV IE-1 antigens, have broad epitope specificity, and are mostly of a high-differentiated effector memory phenotype. We anticipate that these findings may have clinical implications, with acute exercise serving as a simple strategy to increase numbers of available antigen-specific cells in blood that can be harvested for expansion and adoptive T-cell transfer in HSCT recipients
The New Business Corporation Act: The Basics
Handouts provided at the UK/CLE seminar on the New Business Corporation Act on October 1, 1988
Adipokines and Incident Type 2 Diabetes in a Canadian Aborigine Population: The Sandy Lake Health and Diabetes Project
OBJECTIVE—The aim of this study was to investigate associations of adiponectin, leptin, C-reactive protein (CRP), interleukin (IL)-6, and serum amyloid A (SAA), individually or in combinations, with risk of incident type 2 diabetes in a Canadian Aborigine population
Bostonia: The Boston University Alumni Magazine. Volume 11
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Cardiovascular disease risk profile and microvascular complications of diabetes: comparison of Indigenous cohorts with diabetes in Australia and Canada
<p>Abstract</p> <p>Background</p> <p>Indigenous populations of Australia and Canada experience disproportionately high rates of chronic disease. Our goal was to compare cardiovascular (CVD) risk profile and diabetes complications from three recent comprehensive studies of diabetes complications in different Indigenous populations in Australia and Canada.</p> <p>Methods</p> <p>We compared participants from three recent studies: remote Indigenous Australians (2002-2003, n = 37 known diabetes), urban Indigenous Australians (2003-2005, n = 99 known diabetes), and remote Aboriginal Canadians (2001-2002, n = 188 known diabetes).</p> <p>Results</p> <p>The three groups were similar for HbA1c, systolic BP, diabetes duration. Although leaner by body-mass-index criteria, remote Indigenous Australians displayed a more adverse CVD risk profile with respect to: waist-hip-ratio (1.03, 0.99, 0.94, remote Indigenous Australians, urban Indigenous Australians, remote Canadians, p < 0.001); HDL-cholesterol (0.82, 0.96, 1.17 mmol/L, p < 0.001); urine albumin-creatinine-ratio (10.3, 2.4, 4.5 mg/mmol); and C-reactive protein. With respect to diabetes complications, microalbuminuria (50%, 25%, 41%, p = 0.001) was more common among both remote groups than urban Indigenous Australians, but there were no differences for peripheral neuropathy, retinopathy or peripheral vascular disease.</p> <p>Conclusions</p> <p>Although there are many similarities in diabetes phenotype in Indigenous populations, this comparison demonstrates that CVD risk profiles and diabetes complications may differ among groups. Irrespective, management and intervention strategies are required from a young age in Indigenous populations and need to be designed in consultation with communities and tailored to community and individual needs.</p
- …