67 research outputs found

    PGC-1α controls mitochondrial biogenesis and dynamics in lead-induced neurotoxicity

    Get PDF
    Due to its role in regulation of mitochondrial function, PGC1α is emerging as an important player in ageing and neurodegenerative disorders. PGC1α exerts its neuroprotective effects by promoting mitochondrial biogenesis (MB) and functioning. However, the precise regulatory role of PGC1α in the control of mitochondrial dynamics (MD) and neurotoxicity is still unknown. Here we elucidate the role of PGC1α in vitro and in vivo in the regulatory context of MB and MD in response to lead (II) acetate as a relevant model of neurotoxicity. We show that there is an adaptive response (AR) to lead, orchestrated by the BAP31-calcium signalling system operating between the ER and mitochondria. We find that this hormetic response is controlled by a cell-tolerated increase of PGC1α expression, which in turn induces a balanced expression of fusion/fission genes by binding to their promoters and implying its direct role in regulation of MD. However, dysregulation of PGC1α expression through either stable downregulation or overexpression, renders cells more susceptible to lead insult leading to mitochondrial fragmentation and cell death. Our data provide novel evidence that PGC1α expression is a key regulator of MD and the maintenance of tolerated PGC1α expression may offer a promising strategy for neuroprotective therapies.España Ministerio de Economía y Competitividad SAF2012-3902

    Roux-en-Y gastric bypass surgery in Zucker rats induces bacterial and systemic metabolic changes independent of caloric restriction-induced weight loss

    Get PDF
    Mechanisms of Roux-en-Y gastric bypass (RYGB) surgery are not fully understood. This study aimed to investigate weight loss-independent bacterial and metabolic changes, as well as the absorption of bacterial metabolites and bile acids through the hepatic portal system following RYGB surgery. Three groups of obese Zucker (fa/fa) rats were included: RYGB (n = 11), sham surgery and body weight matched with RYGB (Sham-BWM, n = 5), and sham surgery fed ad libitum (Sham-obese, n = 5). Urine and feces were collected at multiple time points, with portal vein and peripheral blood obtained at the end of the study. Metabolic phenotyping approaches and 16S rRNA gene sequencing were used to determine the biochemical and bacterial composition of the samples, respectively. RYGB surgery-induced distinct metabolic and bacterial disturbances, which were independent of weight loss through caloric restriction. RYGB resulted in lower absorption of phenylalanine and choline, and higher urinary concentrations of host-bacterial co-metabolites (e.g., phenylacetylglycine, indoxyl sulfate), together with higher fecal trimethylamine, suggesting enhanced bacterial aromatic amino acid and choline metabolism. Short chain fatty acids (SCFAs) were lower in feces and portal vein blood from RYGB group compared to Sham-BWM, accompanied with lower abundances of Lactobacillaceae, and Ruminococcaceae known to contain SCFA producers, indicating reduced bacterial fiber fermentation. Fecal γ-amino butyric acid (GABA) was found in higher concentrations in RYGB than that in Sham groups and could play a role in the metabolic benefits associated with RYGB surgery. While no significant difference in urinary BA excretion, RYGB lowered both portal vein and circulating BA compared to Sham groups. These findings provide a valuable resource for how dynamic, multi-systems changes impact on overall metabolic health, and may provide potential therapeutic targets for developing downstream non-surgical treatment for metabolic disease

    Adiposity related brain plasticity induced by bariatric surgery

    No full text
    Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain’s homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning

    Roux-en-Y gastric bypass surgery progressively alters radiologic measures of hypothalamic inflammation in obese patients

    Get PDF
    There is increased interest in whether bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) achieve their profound weight-lowering effects in morbidly obese individuals through the brain. Hypothalamic inflammation is a well-recognized etiologic factor in obesity pathogenesis and so represents a potential target of RYGB, but clinical evidence in support of this is limited. We therefore assessed hypothalamic T2-weighted signal intensities (T2W SI) and fractional anisotropy (FA) values, 2 validated radiologic measures of brain inflammation, in relation to BMI and fat mass, as well as circulating inflammatory (C-reactive protein; CrP) and metabolic markers in a cohort of 27 RYGB patients at baseline and 6 and 12 months after surgery. We found that RYGB progressively increased hypothalamic T2W SI values, while it progressively decreased hypothalamic FA values. Regression analyses further revealed that this could be most strongly linked to plasma CrP levels, which independently predicted hypothalamic FA values when adjusting for age, sex, fat mass, and diabetes diagnosis. These findings suggest that RYGB has a major time-dependent impact on hypothalamic inflammation status, possibly by attenuating peripheral inflammation. They also suggest that hypothalamic FA values may provide a more specific radiologic measure of hypothalamic inflammation than more commonly used T2W SI values

    Availability of central α4β2* nicotinic acetylcholine receptors in human obesity

    Get PDF
    Purpose: Obesity is thought to arise, in part, from deficits in the inhibitory control over appetitive behavior. Such motivational processes are regulated by neuromodulators, specifically acetylcholine (ACh), via α4β2* nicotinic ACh receptors (nAChR). These nAChR are highly enriched in the thalamus and contribute to the thalamic gating of cortico-striatal signaling, but also act on the mesoaccumbal reward system. The changes in α4β2* nAChR availability, however, have not been demonstrated in human obesity thus far. The aim of our study was, thus, to investigate whether there is altered brain α4β2* nAChR availability in individuals with obesity compared to normal-weight healthy controls. Methods: We studied 15 non-smoking individuals with obesity (body mass index, BMI: 37.8 ± 3.1 kg/m2; age: 39 ± 14 years, 9 females) and 16 normal-weight controls (non-smokers, BMI: 21.9 ± 1.7 kg/m2; age: 28 ± 7 years, 13 females) by using PET and the α4β2* nAChR selective (−)-[18F]flubatine, which was applied within a bolus-infusion protocol (294 ± 16 MBq). Volume-of-interest (VOI) analysis was performed in order to calculate the regional total distribution volume (VT). Results: No overall significant difference in VT between the individuals with obesity and the normal-weight volunteers was found, while the VT in the nucleus basalis of Meynert tended to be lower in the individuals with obesity (10.1 ± 2.1 versus 11.9 ± 2.2; p = 0.10), and the VT in the thalamus showed a tendency towards higher values in the individuals with obesity (26.5 ± 2.5 versus 25.9 ± 4.2; p = 0.09). Conclusion: While these first data do not show greater brain α4β2* nAChR availability in human obesity overall, the findings of potentially aberrant α4β2* nAChR availability in the key brain regions that regulate feeding behavior merit further exploration

    Increased energy expenditure in gastric bypass rats is not caused by activated brown adipose tissue

    Full text link
    OBJECTIVE: To investigate whether gastric bypass induces a higher activity of brown adipose tissue and greater levels of the brown adipose tissue-specific protein uncoupling protein-1 (UCP-1) in rats. METHODS: Gastric bypass rats and sham-operated controls (each n = 8) underwent whole body (1)H-MR spectroscopy for analysis of body composition and (18)F-fluorodeoxyglucose positron emission tomography combined with computed tomography ((18)F-FDG PET/CT) imaging for measurement of the metabolic activity of brown adipose tissue. Brown adipose tissue was harvested and weighed, and UCP-1 mRNA content was measured by Northern Blot technique. RESULTS: Gastric bypass rats had a significantly lower percentage of whole body adipose tissue mass compared to sham-operated rats (p = 0.001). There was no difference in brown adipose tissue activity between the two groups (standardised uptake value sham 2.81 ± 0.58 vs. bypass 2.56 ± 0.46 ; p = 0.73). Furthermore, there was no difference in the UCP-1 mRNA content of brown adipose tissue between the two groups (sham 49.5 ± 13.2 vs. bypass 43.7 ± 13.1; p = 0.77). CONCLUSION: Gastric bypass does not increase the activity of brown adipose tissue in rats suggesting that other mechanisms are involved to explain the increased energy expenditure after bypass surgery. Our results cannot justify the radiation dose of (18)F-FDG PET/CT studies in humans to determine potential changes in brown adipose tissue after gastric bypass surgery
    corecore