106 research outputs found

    Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression

    Get PDF
    Early-onset major depressive disorder (MDD) is a serious and prevalent psychiatric illness in adolescents and young adults. Current treatments are not optimally effective. Biological markers of early-onset MDD could increase diagnostic specificity, but no such biomarker exists. Our innovative approach to biomarker discovery for early-onset MDD combined results from genome-wide transcriptomic profiles in the blood of two animal models of depression, representing the genetic and the environmental, stress-related, etiology of MDD. We carried out unbiased analyses of this combined set of 26 candidate blood transcriptomic markers in a sample of 15–19-year-old subjects with MDD (N=14) and subjects with no disorder (ND, N=14). A panel of 11 blood markers differentiated participants with early-onset MDD from the ND group. Additionally, a separate but partially overlapping panel of 18 transcripts distinguished subjects with MDD with or without comorbid anxiety. Four transcripts, discovered from the chronic stress animal model, correlated with maltreatment scores in youths. These pilot data suggest that our approach can lead to clinically valid diagnostic panels of blood transcripts for early-onset MDD, which could reduce diagnostic heterogeneity in this population and has the potential to advance individualized treatment strategies

    The Interaction Between Pubertal Timing and Peer Popularity for Boys and Girls: An Integration of Biological and Interpersonal Perspectives on Adolescent Depression

    Get PDF
    The transition to adolescence marks a time of sharply increased vulnerability to the development of depression, particularly among girls. Past research has examined isolated risk factors from individual theoretical models (e.g., biological, interpersonal, and cognitive) of depression, but few have examined integrative models. This study investigated the conjoint effects of early pubertal timing and popularity in the longitudinal prediction of depressive symptoms. A total of 319 girls and 294 boys (ages 11–14) provided information on their pubertal status, depressive symptoms, and the social status (i.e., popularity) of their peers. Adolescents completed a second measure of depressive symptoms 11 months after the initial time point. Findings supported an integrated biological-interpersonal model in explaining the development of depressive symptoms during adolescence. Early pubertal development was associated with increase in depressive symptoms only when accompanied by low levels of popularity. High levels of popularity buffered the association between early pubertal development and later depressive symptoms. Unexpectedly, these results were significant both for girls and boys. Results are discussed in terms of dynamic systems theories

    Increased throughput and ultra-high mass resolution in DESI FT-ICR MS imaging through new-generation external data acquisition system and advanced data processing approaches

    Get PDF
    Desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) is a powerful imaging technique for the analysis of complex surfaces. However, the often highly complex nature of biological samples is particularly challenging for MSI approaches, as options to appropriately address mass spectral complexity are limited. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers superior mass accuracy and mass resolving power, but its moderate throughput inhibits broader application. Here we demonstrate the dramatic gains in mass resolution and/or throughput of DESI-MSI on an FT-ICR MS by developing and implementing a sophisticated data acquisition and data processing pipeline. The presented pipeline integrates, for the first time, parallel ion accumulation and detection, post-processing absorption mode Fourier transform and pixel-by-pixel internal re-calibration. To achieve that, first, we developed and coupled an external high-performance data acquisition system to an FT-ICR MS instrument to record the time-domain signals (transients) in parallel with the instrument’s built-in electronics. The recorded transients were then processed by the in-house developed computationally-efficient data processing and data analysis software. Importantly, the described pipeline is shown to be applicable even to extremely large, up to 1 TB, imaging datasets. Overall, this approach provides improved analytical figures of merits such as: (i) enhanced mass resolution at no cost in experimental time; and (ii) up to 4-fold higher throughput while maintaining a constant mass resolution. Using this approach, we not only demonstrate the record 1 million mass resolution for lipid imaging from brain tissue, but explicitly demonstrate such mass resolution is required to resolve the complexity of the lipidome

    Mass spectrometry imaging for plant biology: a review

    Get PDF
    corecore