5,515 research outputs found

    Polymer depletion effects near mesoscopic particles

    Get PDF
    The behavior of mesoscopic particles dissolved in a dilute solution of long, flexible, and nonadsorbing polymer chains is studied by field-theoretic methods. For spherical and cylindrical particles the solvation free energy for immersing a single particle in the solution is calculated explicitly. Important features are qualitatively different for self-avoiding polymer chains as compared with ideal chains. The results corroborate the validity of the Helfrich-type curvature expansion for general particle shapes and allow for quantitative experimental tests. For the effective interactions between a small sphere and a wall, between a thin rod and a wall, and between two small spheres quantitative results are presented. A systematic approach for studying effective many-body interactions is provided. The common Asakura-Oosawa approximation modelling the polymer coils as hard spheres turns out to fail completely for small particles and still fails by about 10% for large particles.Comment: 68 pages, 6 figure

    Correlated band structure of electron-doped cuprate materials

    Get PDF
    We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using a variational cluster-perturbation theory approach based upon the self-energy-functional theory, the spectral function of the electron-doped two-dimensional Hubbard model is calculated. The model includes the next-nearest neighbor electronic hopping amplitude tt' and a fixed on-site interaction U=8tU=8t at half filling and doping levels ranging from x=0.077x=0.077 to x=0.20x=0.20. Our results support the fact that a comprehensive description of the single-particle spectrum of electron-doped cuprates requires a proper treatment of strong electronic correlations. In contrast to previous weak-coupling approaches, we obtain a consistent description of the ARPES experiments without the need to introduce a doping-dependent on-site interaction UU.Comment: 7 pages 4 eps figure

    Phase separation and competition of superconductivity and magnetism in the two-dimensional Hubbard model: From strong to weak coupling

    Full text link
    Cooperation and competition between the antiferromagnetic, d-wave superconducting and Mott-insulating states are explored for the two-dimensional Hubbard model including nearest and next-nearest-neighbor hoppings at zero temperature. Using the variational cluster approach with clusters of different shapes and sizes up to 10 sites, it is found that the doping-driven transition from a phase with microscopic coexistence of antiferromagnetism and superconductivity to a purely superconducting phase is discontinuous for strong interaction and accompanied by phase separation. At half-filling the system is in an antiferromagnetic Mott-insulating state with vanishing charge compressibility. Upon decreasing the interaction strength U below a certain critical value of roughly U=4 (in units of the nearest-neighbor hopping), however, the filling-dependent magnetic transition changes its character and becomes continuous. Phase separation or, more carefully, the tendency towards the formation of inhomogeneous states disappears. This critical value is in contrast to previous studies, where a much larger value was obtained. Moreover, we find that the system at half-filling undergoes the Mott transition from an insulator to a state with a finite charge compressibility at essentially the same value. The weakly correlated state at half-filling exhibits superconductivity microscopically admixed to the antiferromagnetic order. This scenario suggests a close relation between phase separation and the Mott-insulator physics.Comment: 7 pages, 8 figures, revised version to be published in Phys. Rev.
    corecore