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Polymer depletion effects near mesoscopic particles
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The behavior of mesoscopic particles dissolved in a dilute solution of long, flexible, and nonadsorbing
polymer chains is studied by field-theoretic methods. For spherical and cylindrical particles the solvation free
energy for immersing a single particle in the solution is calculated explicitly. Important features are qualita-
tively different for self-avoiding polymer chains as compared with ideal chains. The results corroborate the
validity of the Helfrich-type curvature expansion for general particle shapes and allow for quantitative experi-
mental tests. For the effective interactions between a small sphere and a wall, between a thin rod and a wall,
and between two small spheres, quantitative results are presented. A systematic approach for studying effective
many-body interactions is provided. The common Asakura-Oosawa approximation modeling the polymer coils
as hard spheres turns out to fail completely for small particles and still fails by about 10% for large particles.
@S1063-651X~99!01406-3#

PACS number~s!: 61.25.Hq, 05.70.Jk, 68.35.Rh, 82.70.Dd
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I. INTRODUCTION

In colloidal suspensions the depletion interaction betw
mesoscopic dissolved particles and nonadsorbing free p
mer chains represents one of the basic and tunable effe
interactions~see, e.g., Ref.@1# for a review!. For example,
adding free polymer chains to the solvent of a colloidal
lution leads to an effective attraction between the partic
which may lead to flocculation@2#. For two individual col-
loidal particles or for a single particle near a planar wall t
effective interaction can be measured even directly@3,4#. In
view of its importance it is surprising that for a long time th
interaction between polymers and colloidal particles h
been modeled only rather crudely by approximating
polymer chains by nondeformable hard spheres@5,1,3,4#.

Chain flexibility has been taken into account only mo
recently. Mainly the following two cases have been cons
ered: ~a! strongly overlapping chains~semidilute solution!
which are described within a self-consistent field theory
within the framework of a phenomenological scaling theo
@6–9#; ~b! nonoverlapping chains~dilute solution! which to a
certain extent can be modeled by random walks without s
avoidance~ideal chains! @10–14#. In three dimensions this
latter situation is closely realized in a theta solvent@15#.

Besides presenting some new results for ideal chains,
main emphasis of the present contribution is on the gen
case of agoodsolvent and we investigate systematically t
consequences of the ensuing excluded volume interac
~EV interaction! @16# on depletion effects in a dilute an
monodisperse polymer solution. The interaction oflong flex-
ible chains with mesoscopic particles leads touniversal re-
sults which are independent of most microscopic det
@15,17–19# and depend only on a few gross properties su
as the shape of the particles. By focusing on such system
obtain results which are free of nonuniversal model para
eters. Due to the universality of the corresponding proper
it is sufficient to choose a simple model for calculating the
results. For example, in a lattice model the interaction
tween a particle and a nonadsorbing chain can be im
PRE 591063-651X/99/59~6!/6853~26!/$15.00
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mented as the purely geometrical restriction that the ch
must not intersect the particle@12#. For our investigations we
use an Edwards-type model@15,17,18# for the polymer chain
which allows for an expansion in terms of the EV interacti
and which is amenable to a field-theoretical treatment. T
basic elements in this expansion are partition functio
Z[0] (r ,r 8) for chain segments without EV interaction~as in-
dicated by the subscript@0#) and with the two ends of the
segment fixed atr and r 8. In this coarse grained descriptio
the interaction of the nonadsorbing polymer with the parti
is implemented by the boundary condition that the segm
partition function vanishes asr or r 8 approaches the surfac
S of the particle@15,19#, i.e.,

Z[0]~r ,r 8!→0, r→S. ~1.1!

Equation~1.1! also applies for long walks on a lattice whic
must not visit the region occupied by the mesoscopic part
@12# provided one considers the variation of the partiti
function on length scales much larger than the lattice c
stant.

The only relevant property which characterizes one of
interacting polymer chains is its mean square end-to-end
tanceR E

2 in the absence of particles and other chains. Wit
the perturbative treatment of the EV interaction it will b
necessary to generalize the three-dimensional space
space ofD spatial dimensions. In this respect it is convenie
@17# to introduce

R x
25R E

2/D, ~1.2!

the mean square of the projection of the end-to-end dista
vector onto a particular direction, say, thex axis, in the
D-dimensional space. For industrially produced polym
such as polystyrene, values ofRx up to the order ofmm are
easily accessible.

The simplest particle shapes relevant for applications
spheres and rods@1# but the particles can also have mo
complex structures such as those of closed bilayer m
6853 ©1999 The American Physical Society
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branes in the case of vesicles@20#. We note that the radiusR
of spherical particles can be quite small as compared to
cessible values ofRx , e.g., R'0.012 mm in the case of
Ludox silica particles@21#. Rodlike objects are provided
e.g., by fibers or colloidal rods@22#, semiflexible polymers
with a large persistence lengthl p such as actin for which
l p'17 mm @23#, and microtubuli@23#. The ratio of the
length l and the radiusR of rodlike particles may be of the
order of 40 or larger, in conjunction with a quite small radi
such asR'0.007 mm in the case of colloidal boehmite rod
@22#. As the interaction between rodlike particles and po
mers is concerned, we considerlong rods, i.e.,R,Rx! l , and
neglect effects which may arise due to their finite lengthl. In
order to be able to treat spheres and cylinders in a uni
way and in general dimensionality, we are thus led to c
sider ageneralized cylinder Kwith an infinitely extended
‘‘axis’’ of dimensiond. Such a generalized cylinder has be
introduced in Ref.@14#, hereafter denoted as I. The ‘‘axis
can be the axis of an ordinary infinitely elongated cylind
(d51), or the midplane of a slab (d5D21), or the center
of a sphere (d50). For general integerD andd the explicit
form of K is

K5$r5~r' ,r i!PRD2d3Rd;ur'u<R% ~1.3!

with r' andr i perpendicular and parallel to the axis, respe
tively. Note thatr' is a d-dimensional vector with

d5D2d. ~1.4!

The radiusR of the generalized cylinderK is the radius in the
cases of an ordinary cylinder or a sphere and it is half of
thickness in the case of a slab. For the slab the geom
reduces to the much studied case of~two decoupled! half
spaces@19#. We stress that the generalization ofD to values
different from 3 is introduced only for technical reasons b
causeDuc54 marks the upper critical dimension for the re
evance of the EV interaction in the bulk@15,17,18#. Eventu-
ally we will be interested in—and will obtain results for—th
experimentally relevant caseD53. These results concer
the solvation free energy for a single particle and the de
tion interaction between particles.

A. Solvation free energy of a particle

We consider the increase in configurational free energ
a dilute solution of long flexible polymers with number de
sity np upon immersing a single particle. Ford.0 we actu-
ally consider a generalized cylinder with a large butfinite
axis lengthl d ~i.e., an ordinary cylinder with axis lengthl or
a slab with cross section areal D21) and study the increas
npf K

(1) in free energy perkBT and perl d in the limit l→`,
for which l drops out@24#. For a spherenpf K

(1) is simply the
free energy increase perkBT. The additional increase in fre
energy upon immersing the particle in the polymer-free~i.e.,
np50) solvent is regarded as a background term which
an experiment, can be determined separately. In
asymptotic regime where bothRx and R are large on the
microscopic scale~such as the monomer length or the dia
eter of the solvent molecules! it turns out thatf K

(1) takes the
scaling form
c-

-

d
-

r

-

e
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-

-

f

n
e
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f K
(1)5RdYd,D~x!, ~1.5!

where Yd,D is a universal scaling function of the scalin
variable

x5Rx /R. ~1.6!

For ideal chains~no EV interaction! andd fixed the function
Yd,D5Yd

(id) is independent ofD ~compare I wheref K
(1) was

denoted asd f K). Results forYd
(id) for d53 ~sphere! and d

52 ~cylinder! have been given in Ref.@11# and in I. Here we
calculate the scaling functionYd,D(x) for chains with EV
interaction perturbatively in terms of«542D with the up-
per critical dimensionDuc54. In particular, we investigate
the following features off K

(1) .
~a! For shortchains, i.e.,x!1, we assume thatYd,D(x) is

analytic so that it can be expanded into a Taylor ser
around x50. This is plausible since for short chains th
thickness ;Rx of the polymer depletion layer is muc
smaller than the particle radiusR so that a small curvature
expansion is applicable tof K

(1) in which a volume term;Rd

is followed by a surface term;Rd21 and by successive
terms;Rd22, Rd23, etc., generated by the surface curv
ture. We note, however, that it can be rather difficult to a
tually prove this assumption.

The first Taylor coefficients of the expansion ofYd,D(x)
aroundx50 also determine the curvature energies of a p
ticle K of more general shapeprovided its surfaceS is
smooth and all principal radii of curvature are much larg
than the polymer sizeRx ~compare Ref.@25# and I!. Con-
sider the increaseFK in configurational free energy upo
immersing a particleK with finite volumevK into the dilute
polymer solution with bulk pressurenpkBT. Due to general
arguments@26# in three dimensions one expects an expa
sion of the Helfrich-type@27#

FK2npkBTvK5E
S
dS$Ds1Dk1Km1Dk2Km

2 1DkGKG

1•••% ~1.7a!

with the local mean curvature

Km5
1

2 S 1

R1
1

1

R2
D ~1.7b!

and the local Gaussian curvature

KG51/~R1R2!, ~1.7c!

whereR1 andR2 are the two principal local radii of curva
ture. We use the convention thatR1 ,R2.0 means that the
boundary surface is bentaway from the polymer solution
located in the exterior ofK. Provided that the expansio
~1.7a! is valid, the surface tensionDs and the curvature
energiesDk1 , Dk2, and DkG are determined uniquely by
the special cases thatK is a sphere and a cylinder, respe
tively. Our explicit results forYd,D(x) provide a strong indi-
cation that the Helfrich-type expansion~1.7! is indeed valid
and, moreover, does yield quantitative estimates of the
face tension and of the curvature energies for the polym
depletion problem in the presence of EV interaction. The
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values are the extra contributions~as indicated by theD ’s! to
the solvation free energy of a particle in addition to its ba
ground value for the polymer free solvent~i.e., np50), not
included in Eq.~1.7a!. To the best of our knowledge, this
the first check of the expansion~1.7! for a nontrivial inter-
acting system that can be realized in nature.

For other types of systems the expansion~1.7! can be
violated. For example, as pointed out by Yamanet al. @28#, a
somewhat counterintuitive behavior arises for the case
which a surface is exposed on one side to a dilute solutio
thin rigid rods ~needles!: even for arbitrarily small surface
curvature the free energy in this case cannot be expande
the analytical and local form of the Helfrich-type expansi
~1.7!. However, for flexible ideal chains instead of need
the expansion is known to apply~see I!. In particular, the
asymmetry in the curvature contribution;R22 between the
inside and outside of a spherical or cylindrical surface
reported by the above authors for needles does not occu
flexible ideal chains.

We note that the curvature energies are experiment
accessible. For example, the expansion~1.7! determines the
change in surface tension and in the first- and second-o
curvature energies of aflexiblesurface such as amembrane
upon exposing one side of it to a solution of polymers wh
are depleted near the membrane@see Fig. 1~a!#. Thus the
addition of polymers to a solution of closed membranes,
vesicles, should influence the phase diagram of ves
shapes in a quantitatively controllable way~see, e.g., Ref.
@29#!. An additional experimental access to the solvation f
energy will be discussed at the end of this subsection.

FIG. 1. Situations of short and long chains in which the limiti
behavior of the scaling functionYd,D(Rx /R) can be applied:~a!
ForRx!R the functionYd,D determines the change of the surfa
tension Ds and curvature energiesDk1 , Dk2, and DkG in the
Helfrich-type expansion~1.7! of a membrane upon exposing on
side of it to a dilute polymer solution.~b! ForRx@R the polymer
can deform in order to avoid the space occupied by the particle
coil around a spherical~or rodlike! particle and the functionYd,D

exhibits the power law~1.8! with the Flory exponentn.
-
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~b! For long chains, i.e.,x@1, a single chain can deform
in order to avoid the space occupied by the particle and
around a spherical or rodlike particle@see Fig. 1~b!#. In this
case it turns out thatYd,D(x) exhibits a power law

Yd,D~x→`!→Ad,Dx1/n ~1.8!

with a dimensionless and universal amplitudeAd,D , pro-
vided

d.1/n, ~1.9!

so thatf K
(1) vanishes forR→0 @see Eq.~1.5!#. Heren is the

Flory exponent characterizing the power-law depende
R x;Nn of Rx on the numberN of monomers per chain ifN
is large. The properties described by Eqs.~1.8! and ~1.9!
follow from a small radius operator expansion~SRE! ~see
Sec. I B below!.

Finally, we emphasize thatf K
(1) is experimentally acces

sible by monitoring the dependence of the number densitync
of the colloidal particles on the number densitynp of the
polymers in a sufficiently dilute solute of immersed particl
which is in thermal equilibrium with a surrounding ideal g
phase with given partial pressurepc

(0) of the particles@30#.
Accordingly nc is determined by a Henry-type law

nc5
pc

(0)

kBT
L21, ~1.10a!

whereL measures the change of the solubility of the coll
dal particles due to the presence of the polymers and is g
by

L5exp~npf K
(1)l d!. ~1.10b!

For the dilute immersed particles the reduced free ene
increasenpf K

(1)l d constitutes a reduced one-particle potent
or, equivalently, an increase in chemical potential, so t
Eq. ~1.10! follows upon equating the chemical potentials
the particles in the ideal gas phase and in the solution ph

B. Colloidal particles with small radii

We consider the case in which a polymer chain intera
with a spherical or cylindrical particle whose radiu
R—albeit being large on the microscopic scale—is mu
smaller than the sizeRx of the chain and other characterist
lengths@31#. In this limiting case the effect of the spheric
particle upon the configurations of the chain can be rep
sented by ad-function potential located at the center of th
particle which repels the monomers of the chain. For a g
eralized cylinderK with a small radiusR this d-function
potential is smeared out over its axis. Thus the Boltzma
weight WK$yi% for the chain@32# arising from the presence
of K ~whose axis includes the origin! is replaced by

WK$yi%→12Ad,DRd21/nwK ~1.11!

with

nd
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wK5H E
Rd

ddr ir~r'50,r i!, d,D

r~0!, d5D,

~1.12!

provided d.1/n. The positions$yi ; i 51, . . . ,N% of the N
chain monomers that define the chain configuration appea
Eq. ~1.12! in terms of the modified monomer density

r~r !5
R x

1/n

N (
i 51

N

d (D)~yi2r !. ~1.13!

The sum ofd functions in Eq.~1.13! is the usual monome
number density at a pointr . We have chosen its prefacto
such thatr(r ) is less dependent on the microscopic mon
mer structure~i.e., on what is considered as a monomer! than
the sum itself. In particular,*dDrr(r )5R x

1/n is independent
of these details whileN is not. The scaling dimensionD
21/n of r(r ) equals its naive inverse length dimension
that the exponent ofR in Eq. ~1.11! follows by comparing
naive dimensions. The amplitudeAd,D is dimensionless and
universal@33#.

The monomer positions$yi% are statistical variables s
that Eq. ~1.11! is a relation between fluctuating quantitie
which is to be used inside polymer conformation avera
such as the ratio of polymer partition functions with a
without the presence ofK. One can use Eq.~1.11! for a
variety of different situations. IfK is the only particle within
reach of the polymer chain, Eq.~1.11! leads to the free
energy change given by Eq.~1.5! in the limit discussed in
Eq. ~1.8!. This is the reason why the same amplitudeAd,D
appears in Eqs.~1.8! and~1.11!. If there are in addition othe
particles or wallsK8, Eq. ~1.11! can be used to calculate th
polymer-mediated free energy of interaction~potential of
mean force! betweenK8 andK ~compare I and Sec. I C be
low!. Equation~1.11! simplifies the theoretical treatment o
these problems significantly becauseK is replaced by the
monomer densityr(r ). While the remaining, simpler aver
ages depend on the particular problem under considera
the universal amplitudeAd,D is always the same.

In this work we study the small radius expansion~1.11!
for the generalized cylinderK for the case of polymers in a
good solvent. Our main objective is to present quantitat
estimates for the universal amplitudesA3,3 and A2,3 corre-
sponding to a sphere and to an infinitely elongated cylin
in three dimensions. The cylinder~i.e., d52) is particularly
interesting since in this case the EV interaction changes
behaviorqualitatively: while for ideal chains a thin cylinde
is a marginal perturbation which can lead to a logarithm
behavior@10# and for which Eq.~1.11! doesnot apply, for
chains with EV interaction the power-law exponentd21/n
'0.30 ispositiveand Eq.~1.11! holds. This peculiarity for
d52 is reflected in the« expansion ofAd,D for D542«.

C. Interactions between particles

Polymer-mediated interactions between particles are
generalnot pairwise additive, i.e., they cannot be written a
a superposition of pair interactions@1,12#. For a dilute poly-
mer solution with polymer densitynp we consider the tota
increase in reduced configurational free energynpf tot

(M ) upon
in

-

s

n,

e

r

e

c

in

immersing spherical particlesK1 , . . . ,KM centered at
r1 , . . . ,r M . The quantityf tot

(M ) has the form

f tot
(M )~r1 , . . . ,r M !5(

i 51

M

f Ki

(1)1(
pairs
i , j

M

f Ki ,K j

(2) ~r i ,r j !1•••

1 f K1 , . . . ,KM

(M ) ~r1 , . . . ,r M !. ~1.14!

The m-body contributionsf (m) for 2<m<M on the right-
hand side of Eq.~1.14! are defined inductively by consider
ing first two particles in order to definef (2) via Eq. ~1.14!,
then three, and so on. For spherical particles the dimen
of f (m) is that of a volume, i.e., of (length)D. The existence
of polymer-mediated nonpairwise interactions has first b
noticed within the PHS approximation, which consists in
placing the polymer by a hard sphere@5#. Here we consider
the limit for which the polymer is flexible and much longe
than the particle radii, i.e.,Rx@R, and where the small-
radius expansion~1.11! gives a simple andquantitativede-
scription. We find that the polymer-mediated interaction
particles with smallR is drasticallydifferent from the deple-
tion interaction for largeR in which case the PHS approx
mation is reasonable and has been widely used. This c
firms the generally accepted belief that for the applicabi
of the PHS approximation a large size ratioR/Rx is crucial
and refutes an opposite claim in Ref.@9#~b!.

As illustration we consider three spherical particlesA, B,
C with radii RA , RB , RC much smaller than their mutua
distances and thanRx . It is easy to see thatf tot

(3) is deter-
mined by the Boltzmann weights of the particles introduc
in the text preceding Eq.~1.11! in the form

f tot
(3)~rA ,rB ,rC!5E

RD
dDy$12WAWBWC%y , ~1.15!

where $ %y denotes the average over all conformations o
single chain infree space~i.e., no particles! under the con-
straint that one end of the chain is fixed at the pointy. In the
limit of small radii R one finds by using Eq.~1.11! that in
addition to the one-body contributionsf A

(1) , f B
(1) , and f C

(1) ,
each exhibiting the scaling form described by Eq.~1.5! in the
limit given by Eq.~1.8!, there arise two-body contributions

f A,B
(2)→2~AD,D!2~RARB!D21/nC2~rA ,rB!, ~1.16a!

f A,C
(2) , and f B,C

(2) , and a three-body contribution

f A,B,C
(3) →~AD,D!3~RARBRC!D21/nC3~rA ,rB ,rC!.

~1.16b!

The arrows in the above relations indicate the leading beh
ior for small radii. HereC2 andC3 are pair and triple corre-
lation functions corresponding to

Cm~r1 ,r2 , . . . ,rm!5E
RD

dDy$r~r1!r~r2!•••r~rm!%y

~1.17!

of the~modified! monomer densityr(r ) defined in Eq.~1.13!
for a single polymer chain in free space. SinceRx and the
relative distancesr AB5urA2rBu are large on the microscopi
scale, these correlation functions exhibit the scaling form
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C2~rA ,rB!5R x
2/n2Dg~zAB!, ~1.18a!

with zAB5r AB /Rx , and

C3~rA ,rB ,rC!5R x
3/n22Dh~zAB ,zAC ,zBC!, ~1.18b!

which follow from the scaling dimensionD21/n of r(r ).
Thus for three spherical particles with equal radiiR and with
center-to-center distancesr AB , r AC , r BC which are of the
order ofRx but much larger thanR, the three-body interac
tion is smaller than the two-body interaction by a fac
;(R/Rx)

D21/n.
Similar fluctuation-induced, non-pairwise-additive inte

actions arise between particles which are immersed in a n
critical fluid mixture @34#. In this case one encounters ord
parameter correlation functions instead of the present mo
mer density correlation functions.

The small radius expressions~1.16! cease to apply—even
if the equal radiiR are much smaller thanRx—if some of the
relative distances between the spheres become compa
with R. However, there are other types of short distance
pansions which are capable of describing these latter s
tions. In particular we shall discuss a ‘‘small dumbbell’’ e
pansion for a pair of spheresA, B for which bothR andr AB
are much smaller than the other lengths. The structure of
expansion is similar to Eq.~1.11! in conjunction with the
lower part of Eq.~1.12!, but the amplitude corresponding t
AD,D now depends on the ratior AB /R. We calculate this new
amplitude function for the case of ideal chains.

In Sec. II we discuss in detail the solvation free energy
a single particle. In Sec. III we consider the depletion int
action between particles. Section IV contains our conc
sions. In Appendix A we derive the asymptotic expansio
for a small and large size ratioRx /R required for Sec. II. In
Appendix B we discuss the perturbative treatment of
small radius operator expansion. Finally, in Appendix C,
derive a short-distance amplitude which characterizes the
havior of monomer density correlation functions in fr
space as needed in Sec. III.

II. SOLVATION FREE ENERGY OF A PARTICLE

The free energy for immersing a particle in a dilute so
tion of freely floating chains with or without self-avoidanc
can be expressed in terms of the density profile of chain e
in the presence of the particle@compare, e.g., Eq.~3.7! in I#.
For the scaling function introduced in Eq.~1.5! this implies

Yd,D~x!5
Vd

d
1VdQd,D~h!, h5x2/2, ~2.1!

with Vd52pd/2/G(d/2), the surface area of th
d-dimensional unit sphere, and

Qd,D~h!5E
1

`

drrd21@12ME~r,h!#. ~2.2!

In Eq. ~2.2! the scaling functionME(r' /R,h) is the bulk
normalized density profile of chain ends at a distancer'

2R from the particle surface. In Sec. II A we derive th
explicit form of Qd,D(h) in the presence of EV interaction t
lowest nontrivial order in«542D. In Secs. II B and II C we
r

ar-

o-

ble
x-
a-

is

r
-
-
s

e
e
e-

-

ds

discuss the resulting behavior ofYd,D(x) in the limit of short
and long chains, respectively. Finally, we obtain in Sec. I
an approximation for the full scaling functionY3,3(x) corre-
sponding to a sphere inD53.

A. Density of chain ends and polymer magnet analogy

We employ the polymer magnet analogy~PMA! in order
to calculate the density profileME of chain ends in a dilute
solution of chains with EV interaction which arises in th
presence of the nonadsorbing generalized cylinderK intro-
duced in Eq.~1.3!. As in I we defineME as bulk normalized
so that it approaches 1 far from the particle. It is given b

ME~r' ;L0 ,R,u0!

5E
V
dDr 8Z~r ,r 8;L0 ,R,u0!Y E

V
dDr 8Zb~r ,r 8;L0 ,u0!.

~2.3!

HereZ andZb are partition functions of a single chain wit
the two ends fixed atr , r 8 in the presence and absenc
respectively, of the generalized cylinderK ~the subscriptb
stands for ‘‘bulk’’!. The volumeV available for the chain is
the outer spaceV5RD\K of K. The parameteru0 character-
izes the strength of the EV interaction andL0 determines the
monomer content or ‘‘length’’ of the chain such that 2L0

equals the mean squareR x
2 of the projected end-to-end dis

tance of the chain in the absence ofK and of the EV inter-
action, i.e., foru050. The usual arguments of the PM
@15,17–19# carry over to the present case and imply the c
respondence

Z~r ,r 8;L0 ,R,u0!5Lt0→L0
^F1~r !F1~r 8!&uN50 ~2.4!

between Z and the two-point correlation function
^F1(r )F1(r 8)& in an O(N)-symmetric field theory for an
N-component order parameter fieldF5(F1 , . . . ,FN) in
the restricted volumeV5RD\K. In Eq. ~2.4! the operation

Lt0→L0
5

1

2p i ECdt0eL0t0 ~2.5!

acting on the correlation function is an inverse Laplace tra
form with C a path in the complext0 plane to the right of all
singularities of the integrand. The Laplace conjugatet0 of L0
and the excluded volume strengthu0 appear, respectively, a
the temperature parameter and the prefactor of the (F2)2

term in the Ginzburg-Landau Hamiltonian

HK$F%5E
V
dDr H 1

2
~¹F!21

t0

2
F21

u0

24
~F2!2J ,

~2.6a!

which provides the statistical weight exp(2HK$F%) for the
field theory. The position vectorr covers the volumeV and
its boundary, which is the surface ofK. In order to be con-
sistent with Eq.~1.1! we have to impose the Dirichlet con
dition

F~r !50 if ur'u5R ~2.6b!

on the boundary. This corresponds to the fixed point bou
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ary condition of the so-called ordinary transition@35,36# for
the field theory. For our renormalization-group improv
perturbative investigations we use a dimensionally regu
ized continuum version of the field theory which we sh
renormalize by minimal subtraction of poles in«542D
t

-
e

c

n

r-
l

@37# @this is related via Eq.~2.4! to a corresponding proce
dure in the Edwards model@17–19##. The basic element o
the perturbation expansion is the Gaussian two-point co
lation function ~or propagator! ^F i(r )F j (r 8)& [0] where the
subscript@0# denotesu050. It is given by
^F i~r !F j~r 8!& [0]5d i j G~r ,r 8;t0 ,R!5d i j Ĝ~r' ,r'8 ,q,ur i2r i8u;t0 ,R!

5d i j 35 (
n50

`

Wn
(a)~q!E

Rd

ddP

~2p!d
exp@ iP~r i2r i8!#G̃n~r' ,r'8 ;S,R!, d,D

(
n50

`

Wn
(a)~q!G̃n~r' ,r'8 ;t0 ,R!, d5D,

~2.7a!
on-

d

where a5(d22)/2, S5P21t0 , r'5ur'u, and q is the
angle betweenr' andr'8 ~compare Fig. 1 in I!. Note that for
d5D @last line in Eq.~2.7a!# there is no parallel componen
r i2r i8 and hence no Fourier variableP. The functions
Wn

(a)(q) are given by

Wn
(a)~q!5H ~2pd/2!21G~a!~n1a!Cn

a~cosq!, dÞ2

~2p!21~22dn,0!cos~nq!, d52,
~2.7b!

whereG is the gamma function,Cn
a are Gegenbauer polyno

mials @38#, and dn,051 for n50 and zero otherwise. Th
functionsWn

(a) are normalized so that*dVdWn
(a)5dn,0 . The

propagatorG̃n has the form

G̃n~r' ,r'8 ;S,R!5~r'
(,)r'

(.)!2aKa1n~ASr'
(.)!

3F I a1n~ASr'
(,)!

2
I a1n~ASR!

Ka1n~ASR!
Ka1n~ASr'

(,)!G ,

~2.7c!

where r'
(,)5min(r' ,r'8 ) and r'

(.)5max(r' ,r'8 ). For d5D
the variableS is replaced byt0 . I a andKa denote modified
Bessel functions@38#.

The numerator in the density profileME in Eq. ~2.3! can
be obtained from the integrated two-point correlation fun
tion, i.e., the local susceptibilityx, for t0.0. Due to rota-
tional invariance around and translational invariance alo
the axis ofK, the local susceptibilityx only depends on the
radial componentr' of the point r5(r' ,r i). The loop ex-
pansion ofx reads

x~r' ;t0 ,R,u0!5x [0]~r' ;t0 ,R!1u0x [1]~r' ;t0 ,R!

1O~u0
2!, ~2.8!

where the zero-loop contributionx [0] is given by the inte-
grated propagator
-

g

x [0]~r' ;t0 ,R!5E
V
dDr 8G~r ,r 8;t0 ,R!

5
R2

t0
F12

r2aKa~rAt0!

Ka~At0!
G . ~2.9!

The greek symbols on the right-hand side~rhs! denote di-
mensionless variables expressed in terms of the radiusR of
K:

t05t0R2, r5r' /R. ~2.10!

According to standard perturbation theory the one-loop c
tribution is given by

u0x [1]~r' ;t0 ,R!52
N12

3

u0

2 E
V
dDy G~r ,y;t0 ,R!

3G~y,y;t0 ,R!x [0]~y' ;t0 ,R!

52
N12

3

u0

2
R21«E

1

`

dcc«21G~r,c,t0!

3g~c,t0 ,«!X [0]~c,t0!, ~2.11!

wherec5y' /R @compare Eq.~2.10!#. The functions in the
integrand of the last line in Eq.~2.11! are dimensionless an
defined by

X [0]~c,t0!5R22x [0]~y' ;t0 ,R!, ~2.12!

G~r,c,t0!5R2aG̃n50~r' ,y' ;S5t0 ,R!, ~2.13!

y'
« g~c,t0 ,«!5y'

d R22aG~y,y;t0 ,R!. ~2.14!

The functiong can be split intog5gb1gs , where

gb~c,t0 ,«!5t0
12«/2cd2«

G~«/221!

~4p!D/2
~2.15a!

stems from the bulk contribution ofG(y,y;t0 ,R) and
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gs~c,t0 ,«!52c22« (
n50

`

Wn
(a)~q50!5

Vd

~2p!dE0

`

dqqd21
I a1n~Aq21t0!

Ka1n~Aq21t0!
@Ka1n~cAq21t0!#2, d,D

I a1n~At0!

Ka1n~At0!
@Ka1n~cAt0!#2, d5D.

~2.15b!

Note thatd5D2d542«2d. In the cased,D we shall considerd @anda5(d22)/2# as a variable which isindependentof
D542« whereas in the cased5D the variablea512«/2 depends of course on«. One can check that in the cased51, for
which Wn

(a)(q50) with a521/2 contributes only forn50 and 1, the upper part of Eq.~2.15b! leads indeed to the half-spac
result

G~y,y;t0 ,R!2Gb~y,y;t0!52
VD21

~2p!D21E0

`

dP
PD22

2AP21t0

exp@22AP21t0~y'2R!#, d51, ~2.15c!

where the integral can be expressed in terms of a modified Bessel function. We add the following two remarks ab
behavior ofgs for d.1 if R→` or R→0.

~i! It is instructive to see how the behavior for the half-space arises by taking the limitR→` with t0 and y'2R fixed.
Consider, e.g., the cased5D54 corresponding to the sphere in four dimensions. Since upon approaching the above lim
arguments of the Bessel functions in the lower Eq.~2.15b! become large and since many terms contribute in the sum oven,
one has to use the uniform asymptotic expansion of the Bessel functions@compare, e.g., Eqs. 9.7.7 and 9.7.8 in Ref.@38~a!##
and may replace the sum by an integral. This yields thatG(y,y;t0 ,R)2Gb(y,y;t0) for d5D54 does indeed tend to the
half-space expression on the rhs of Eq.~2.15c! with D54, where the role of the lengthP of the wave vectorP is taken by the
ratio n/R.

~ii ! For d.2 and fixed nonvanishing lengthsy' and t0
21/2 the quantitygs(c,t0 ,«) has a finite limit forR→0, i.e.,

gs
(as)~cAt0,«![ lim

R→0
gs~c,t0 ,«!52

222d

pd/2G~a! H Vd

~2p!dE0

`

dk kd21~k21c2t0!a@Ka~Ak21c2t0!#2, d,D

~c2t0!a@Ka~cAt0!#2, d5D,

~2.15d!
ra

t

io

h

ity

ter-

re-

ility
which depends only on theR-independent productcAt0

5y'At0 and describes the behavior ofgs for R!y' , t0
21/2.

This is consistent with the operator expansion for small
diusR of the Boltzmann weight representingK when applied
to a Gaussian field theory~compare I!. While gs

(as) decays
exponentially forcAt0→`, it approaches a finite constan
for cAt0→0, which equals2a/(4p2) for «50 and char-
acterizes the behavior ofgs for R!y'!t0

21/2. This should
be compared with the behaviorgs;2(c21)22D which ap-
pliesclose to the surfaceof K, i.e., for 0,y'2R!R, t0

21/2.
The reparametrizations@37#

u0516p2f ~e!m«Zuu, Zu511O~u!, ~2.16a!

and

t05m2Ztt5m2S 11
N12

3

u

«
1O~u2! D t ~2.16b!

of the bare bulk parametersu0 andt0 in terms of their renor-
malized and dimensionless counterpartsu and t are not af-
fected by the presence of the surface@39,36#. Herem is the
inverse length scale which determines the renormalizat
group flow and f («)511« f 11O(«2). The coefficientf 1
drops out from universal quantities and therefore can be c
sen arbitrarily. Equation~2.16b! implies the renormalized
counterpart
-

n-

o-

t5~mR!2t ~2.16c!

of t0. The renormalized, i.e., pole-free, local susceptibil
x ren is related tox by @36,37#

x ren~r' ;t,R,u!5x~r' ;t0 ,R,u0!/ZF~u!

5x~r' ;t0 ,R,u0!1O~u2! ~2.16d!

with the renormalization factorZF of the fieldF which de-
viates from one only in second order inu. The only pole in
x [1] is due to the bulk contributiongb in Eq. ~2.15a!. When
the results forx [0] and u0x [1] in Eqs. ~2.9! and ~2.11! are
substituted into Eq.~2.8! and when the bare parameterst0
andu0 are expressed in terms of their renormalized coun
partst andu according to Eqs.~2.16!, the poles in« cancel
indeed@39#. This cancellation can be traced back to the
lation

E
1

`

dc cd21G~r,c,t!X [0]~c,t!52
]

]t
X [0]~r,t!.

~2.17!

The resulting renormalized and scaled local susceptib
Xren5R22x ren up to one-loop order reads
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Xren~r,t,mR,u!5X [0]~r,t!1
N12

3
u

3F S ln t

2
2 ln~mR!1BD t

]

]t
X [0]~r,t!

1Ed~r,t!G1O~u2! ~2.18!

with the nonuniversal constant

B5
CE

2
2

1

2
2 f 12

ln~4p!

2
, ~2.19!

whereCE is Euler’s constant, and the function

Ed~r,t!528p2E
1

`

dc c21G~r,c,t!

3gs~c,t,«50!X [0]~c,t!. ~2.20!

SinceEd belongs to the one loop contribution and because
the last line of Eq.~2.11! the order of thec integration and
the limit «→0 can be interchanged, we set«50 in the inte-
grand on the rhs of Eq.~2.20!. This implies that in the case
d5D only E4 enters into Eq.~2.18! @compare the remark
below Eq.~2.15b!#. The integral on the rhs of Eq.~2.20! is
well-defined since the divergence ofgs(c,t,«50) for c↘1
becomes integrable due to the Dirichlet behavior ofG and
X [0] as implied by Eq.~2.6b!. We also need the bulk valu
~far away fromK) of the renormalized local susceptibility u
to one-loop order, which reads

Xren, b~t,mR,u!5
1

t
2
N12

3

u

t S ln t

2
2 ln~mR!1BD

1O~u2!. ~2.21!

The perturbative result~2.18! can be improved using stan
dard renormalization-group arguments@36#. Although we
need only the results~2.18! and ~2.21! for the discussion of
the polymer-depletion problem, we note that in t
asymptotic limit for whichr' , R, and the bulk correlation
length j1 for t.0 are large compared with microscop
lengths, the ratio

Xren~r,t,mR,u!/Xren,b~t,mR,u!→JN~r,g! ~2.22!

yields a scaling form expressed in terms of the univer
scaling function JN(r,g) with the scaling variablesr
5r' /R and g5R2/j1

2 . The functionJN depends on the
numberN of components ofF, on the parameterd, which
characterizes the shape ofK, and on the space dimensionD.
While the amplitudej0

1 in the bulk relationj15j0
1t2n(N) is

nonuniversal, the exponentn(N) is universal and depend
only onN and D. The asymptotic scaling behavior is go
erned by the infrared~long-distance! stable fixed point for
which

u5u* 5
3«

N18
1O~«2! ~2.23!
n

l

and

n~N!5
1

2
1

1

4

N12

N18
«1O~«2!. ~2.24!

The bulk correlation lengthj1 can be defined in various
ways. For definiteness we assume thatj1

2 is defined as the
second moment of the two-point correlation function divid
by 2D, which implies

~j0
1!25@Dt~u!#22n(N)H m22F12

N12

N18
«B1O~«2!G J

~2.25!

with the nonuniversal constantB defined in Eq.~2.19!. Here
the curly bracket equalsj1

2 for t51 and u5u* , and the
dependence of (j0

1)2 on u is contained in the dimensionles
amplitudeDt which can be expressed in terms of Wilso
functions corresponding to the renormalization-group flow
t andu @37,17–19#. When Eqs.~2.23!–~2.25! are combined
with Eqs.~2.18! and ~2.21!, one finds thatXren/Xren,b at the
fixed point is indeed consistent with Eq.~2.22! and that the
scaling functionJN is given by

JN~r,g!5gX [0]~r,g!1
N12

N18
«gEd~r,g!1O~«2!.

~2.26!

Equation~2.26! provides the general result for the bulk no
malized local susceptibility of the magnetic analog in t
presence ofK.

The densityME of chain ends as defined in Eq.~2.3! can
be related toXren5R22x ren, with x ren from Eq. ~2.16d!, by
means of Eqs.~2.4! and ~2.16!. The result is

ME~r' ;L0 ,R,u0!5Zren~r,l,mR,u!/Zren,b~l,mR,u!,
~2.27a!

where

Zren~r,l,mR,u!5Lt→l$Xren~r,t,mR,u!%uN50
~2.27b!

is the renormalized and scaled version of the integrated c
partition function in the numerator of the rhs of Eq.~2.3!.
HereL is the operation in Eq.~2.5! and

l5L/~mR!25ZtL0 /R2 ~2.27c!

is the scaled counterpart of the renormalized and dimens
less chain ‘‘length’’ L @17–19# so thatlt5Lt5L0t0. For
larger' , L0 , R the end density exhibits the scaling behav

ME~r' ;L0 ,R,u0!→ME~r,h!, ~2.27d!

whereME is a universal scaling function ofr5r' /R and the
scaling variable

h5
R x

2

2R2
. ~2.27e!

According to our definition in Eq.~1.2! of R E
25DR x

2 as the
second moment of the bulk partition functionZb(r ,r 8) the
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nonuniversal prefactorr 0
2 in the asymptotic behavio

R E
2/(2D)5r 0

2L2n, with n5n(N50), has the form

r 0
25@DL~u!#2nH m22F12

«

4 S B112
CE

2 D1O~«2!G J
~2.28!

with B from Eq. ~2.19!. The curly bracket equalsR E
2/(2D)

for L51 andu5u* and the dependence ofr 0
2 on u is con-

tained in the amplitudeDL51/Dt with Dt from Eq. ~2.25!
~compare, e.g., Ref.@19#!. Obviouslyh plays a similar role
as the inverse of the scaling variableg5R2/j1

2 in Eq. ~2.26!
in the magnetic analog. By using Eqs.~2.27a! and ~2.27b!
and by carrying out the same steps which lead to the sca
function JN in Eq. ~2.26! of the magnetic analog, one a
rives at

ME~r,h!5ME
[0]~r,h!1

«

4
ME

[1]~r,h!1O~«2!,

~2.29a!

where

ME
[0]~r,h!5Lt→h$X [0]~r,t!% ~2.29b!

is the zero-loop, i.e., Gaussian contribution and@40#

ME
[1]~r,h!5Lt→h$Ed~r,t!%1Lt→hH ln t

2 Ft ]

]t
X [0]~r,t!

1
1

t G J 1
1

2 F12ME
[0]~r,h!2h

]

]h
ME

[0]~r,h!G
3@ ln h1CE#1h

]

]h
ME

[0]~r,h!. ~2.29c!

Equation~2.29! provides the general result for the bu
normalized density of chain endsME in a dilute polymer
solution in the presence ofK. According to Eq.~2.2! for the
scaling functionYd,D we only need the integrated form. Th
terms in Eq.~2.29c! have been arranged such that ther
integration in Eq.~2.2! can be carried out in each brack
separately. This leads to

Qd,D~h!5Pd
[0]~h!1

«

4
Pd

[1]~h!1O~«2!, ~2.30a!

where

Pd
[0]~h!5Lt→hH Ka11~At!

t3/2Ka~At!
J ~2.30b!

is the zero-loop, i.e., Gaussian contribution and

Pd
[1]~h!52Cd~h!1Lt→hH t ln t

2

]

]t F Ka11~At!

t3/2Ka~At!
G J

2
1

2 FPd
[0]~h!1h

]

]h
Pd

[0]~h!G@ ln h1CE#

1h
]

]h
Pd

[0]~h!. ~2.30c!
ng

In Eq. ~2.30c! we have introduced the function

Cd~h!5Lt→h$Cd~t!% ~2.31a!

with

Cd~t!5E
1

`

dr rd21Ed~r,t!

528p2E
1

`

dc c21gs~c,t,«50!

3@X [0]~c,t!#2, ~2.31b!

where Eq.~2.20! has been used. The functions in the int
grand of the last line in Eq.~2.31b! are given by Eqs.~2.15b!
and ~2.12! in conjunction with Eq.~2.9!. In the cased5D
we have to considerC4(t) only @compare the remark below
Eq. ~2.20!#.

B. Short chains: Yd,D„x… for x˜0

The aim of this subsection is to determine the surfa
tensionDs and the curvature energiesDk1 , Dk2, andDkG
in the expansion~1.7! to first order in«542D by consid-
ering the special cases that the particleK is a generalized
cylinder K with d5D, 3, and 2.

The analyticity ofYd,D(x) at x50 mentioned in Sec. I A
is corroborated by our first-order results in Eqs.~2.30! and
~2.31! for Qd,D(h), which can be expanded into a Taylo
series inAh5x/A2. In the following we determine the firs
three terms of this expansion. The expansion is consis
with the behavior

Cd~t!5C 0t23/21C 1
(d)t221C 2

(d)t25/21O~t23!
~2.32!

for large t5(mR)2t of the functionCd(t) in Eq. ~2.31b!
which we verify in Appendix A. Its form@40#

Qd,D~h!5
2h1/2

Ap
H 12

«

4 F12
3 ln 2

2
1C0G J

1hH d21

2
2

«

4
C 1

(d)J 1
4h3/2

3Ap
H ~d21!~d23!

8

3F12
«

4 S 11

6
2

5 ln 2

2 D G2
«

4
C 2

(d)J 1O~h2,«2!

~2.33!

follows from Eqs.~2.30! and ~2.31! by inserting Eq.~2.32!
and the larget behavior

Ka11~At!

t3/2Ka~At!
5t23/21

d21

2
t221

~d21!~d23!

8
t25/2

1O~t23!. ~2.34!

SinceC0 is related to the surface tensionDs it should not
depend on the shape ofK, i.e., on the value ofd. Using, e.g.,
Eqs. ~2.31b!, ~2.14!, and ~2.15c! corresponding to a plana
wall ~i.e., d51), one finds
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C052
p

2
1

p

A3
. ~2.35!

The evaluation of the coefficientsC 1
(d) andC 2

(d) in Eq. ~2.32!
for d5D, 3, and 2 is carried out in Appendix A by exten
ing the method explained after Eq.~2.15c! to the next-to-
leading terms. Ford5D, we have to considerC4(t) only and
find

C 1
(4)52

17

6
1

15p

4
2

3A3p

2
, ~2.36a!

C 2
(4)52661

8011p

128
2

191A3p

8
; ~2.36b!

for d53, we find

C 1
(3)52

17

9
1

5p

2
2A3p, ~2.37a!

C 2
(3)52

551

15
1

1673p

48
2

40p

A3
; ~2.37b!

and ford52,

C 1
(2)52

17

18
1

5p

4
2

A3p

2
, ~2.38a!

C 2
(2)52

221

15
1

1791p

128
2

43A3p

8
. ~2.38b!

We now determine the surface tensionDs and the curva-
ture energiesDk1 , Dk2, andDkG in the expansion~1.7!. To
this end we need to generalize this expansion to be ap
cable to (D21)-dimensional surfaces of general shape w
values ofD different from 3. According to differential ge
ometry for integerD>3 the expansion has again the for
~1.7a! and the corresponding curvatures are given by

Km5
1

2 (
i 51

D21
1

Ri
5

d21

2

1

R
~2.39a!

and

KG5 (
pairs
i , j

D21
1

RiRj
5

~d21!~d22!

2

1

R2
, ~2.39b!

whereRi are theD21 principal local radii of curvature.
We briefly outline the argument: Following Ref.@26# the

curvature contributions should depend on how the surfac
embedded in the spaceRD, i.e., they should be derivabl
from the local extrinsic curvature tensorK i j 5Ki j n, wheren
is the local unit vector normal to the surface~we only con-
sider orientable surfaces!. The principal local radii of curva-
tureRi are the inverse of theD21 eigenvalues of the matrix
(Ki j ). ThereforeKm , Km

2 , andKG as defined in Eqs.~2.39!
are the only independent scalar quantities to first and sec
order in 1/Ri which can be deduced fromKi j and which are
invariant under permutations of the indicesi 51, . . . ,D21.
li-

is

nd

The last expressions on the rhs of Eq.~2.39! apply to the
surface of a generalized cylinderK with integerd<D. These
expressions hold because the surface ofK has d21 finite
local radii of curvatureRi5R which allow for (d21)(d
22)/2 different pairings. Note that forD53 Eqs. ~2.39!
reduce to Eqs.~1.7b! and ~1.7c!. Applying Eqs.~1.7a! and
~2.39! to generalized cylindersK in D dimensions one infers
from the definition~1.5! of Yd,D and Eq.~2.1! the general
form

npkBTRQd,D~h!5Ds1Dk1

d21

2

1

R
1FDk2

~d21!2

4

1DkG

~d21!~d22!

2 G 1

R2
1O~R23!

~2.40!

of Q for small h. Explicit results forDs, Dk1 , Dk2, and
DkG follow from the results~2.35!–~2.38! for the coeffi-
cientsC i

(d) by comparing Eq.~2.40! with Eq. ~2.33!. Using
h5R x

2/(2R2), we find for the surface tension to first orde
in «542D

Ds5npkBTRxA2

pH 12
«

4 F12
3 ln 2

2
1C0G J

'npkBTRx0.798~120.0508«!1O~«2!. ~2.41!

Here and in the rest of this subsection by taking«51 one
obtains the corresponding estimate for the physical dim
sionD53. By settingd52, 3, andD in Eq. ~2.40!, in which
the generalization ofd to noninteger values is obvious, w
find for the curvature energies

Dk15npkBT
R x

2

2 H 12
«

2
C 1

(2)J
'npkBTR x

20.5~120.131«!1O~«2!, ~2.42!

Dk252npkBT
R x

3

3A2p
H 12

«

4 F S 11

6
2

5 ln 2

2 D28C 2
(2)G J

'2npkBTR x
30.133~120.0713«!1O~«2!, ~2.43!

and finally

DkG52Dk22«npkBT
R x

3

3A2p

C 2
(3)

2

'npkBTR x
30.133~120.177«!1O~«2!. ~2.44!

Note thatDk1 is fixed by considering only one of the cas
d52, 3, andD @we chosed52 in Eq. ~2.42!#. However,
sinceDk1 must not depend on the value ofd, one derives the
two conditions

C 1
(2)5
C 1

(3)

2
5
C 1

(4)

3
, ~2.45a!

which must be fulfilled if the expansion~1.7! is consistent up
to one-loop order in the EV interaction of the polym
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chains. Similarly,Dk2 and DkG are fixed by considering
only two of the casesd52, 3, andD @we chosed52 and 3
in Eqs.~2.43! and~2.44!#. Thus one derives the third cond
tion

C 2
(4)53@C 2

(3)2C 2
(2)#. ~2.45b!

By using the values ofC 1
(d) andC 2

(d) as derived in the case
~a!, ~b!, ~c! above, one finds that all three conditions~2.45!
are indeed fulfilled. This confirms to first order in« the as-
sumption preceding Eq.~2.32! that the scaling function
Yd,D(x) is analytic atx50, and that the Helfrich-type ex
pansion~1.7! is applicable to the present polymer-depleti
problem for chains with EV interaction. Considering the i
volved analytical means which were necessary to derive
coefficientsC i

(d) ~see Appendix A!, we regard this as a ver
valuable and important check of our calculation and in ad
tion as strong evidence that the above statements forYd,D(x)
are general properties inD53 which hold beyond the
present perturbative treatment.

Note that the EV interaction of the polymer chains r
duces the absolute values of the surface tensionDs and of
the curvature energiesDk1 , Dk2, andDkG as compared to
ideal chains. This trend can be anticipated because the
interaction of the chain monomers effectivelyreducesthe
depletion effect of the particle surface~compare, e.g., Ref
@19#!. However, the corresponding corrections are relativ
small so that the overall behavior is changed only quant
tively. Thus exposing one side of a flexible membrane t
solution of polymers which are depleted by the membra
favors a bending of the membrane surface towards the s
tion @41# and leads to a weakening of its surface rigidity. T
sign of the Gaussian curvature energyDkG will generally
favor surfaces with higher genuses~see the Introduction and
I!. If the resolution of an experimental setup is high enou
to observe these effects quantitatively, the corrections du
the presence of the EV interaction of the polymer chains
compared to the behavior for ideal chains should be det
able. Specifically we consider the experiments for vesic
reported by Do¨bereineret al. @29#. The intrinsic spontaneou
curvature energyk1 of the bilayer membrane is to be iden
tified with their quantity22k c̄0 /RA @compare Eq.~9! in
Ref. @29##. The differenceDk1 @see Eq.~2.42!# should be
added in the presence of polymers in the solution. The len
RA is of the order of the size of the vesicle. Upon inserti
the valuesk'10219 J andc̄0'10 ~compare Fig. 9 in Ref.
@29#! one infersk1RA'22310218 J. On the other hand
for T5300 K andnpR x

3 of order unity, which means tha
the polymer solution is still in the dilute regime so that t
result~2.42! is valid, one hasDk1R x'2310221 J. The size
ratioRx /RA is of the order of 1/100!1 for realistic values
RA'10 mm andRx'0.1 mm. We conclude thatDk1 can
reach a value up to about 10% ofk1 in a quantitatively
controllable way. This can be expected to lead to observa
effects near a shape transition of the vesicle.

Ideal chains lead to the behavior that all contributions
curly brackets on the rhs of the expansion~1.7a! of second
and higher order in the curvaturevanish for the case of a
generalized cylinder withd53 and D>3 arbitrary @com-
pare, e.g., Eqs.~3.9! and ~3.11! in I#. This encompasses, i
e
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particular, the three-dimensional sphere for whichd5D53.
For the contribution of second order in the curvature
reason is a combination of the general propertyKG5Km

2 for
d53 @compare Eq.~2.39!# with the propertyDkG52Dk2
valid for any dimensionD if the chains are ideal. However
the last property is rather special and is violated for polym
with EV interaction inD slightly below 4 since Eq.~2.44!
implies

Dk21DkG52«npkBT
R x

3

3A2p

C 2
(3)

2

'2«npkBTR x
30.01411O~«2!. ~2.46!

There is no reason to believe that this violation is removed
D53. Rather the crossover to a behaviorQ3,3;(Rx /R)1/n

for Rx /R→` with the Flory exponentn'0.588 @see Eqs.
~1.8!, ~2.1!, and Sec. II C# implies infinitely many nonvan-
ishing terms in the small curvature expansion~1.7a! in D
53. Thus in the physically important case of the thre
dimensional sphere the appearance of the EV interac
does lead to aqualitativechange.

As an illustration, consider a spherical membrane in
dilute polymer solution withboth sides of the membrane
exposed to the polymers. In this case the contributions
Dk1Km in the expansion~1.7a! from each side cancel an
Eq. ~2.46! implies that for chains with EV interaction th
free energy cost for immersing the spherical membrane
smalleras compared to a flat membrane with the same a
This is different from the behavior for ideal chains for whic
the solvation free energies for a spherical and a flat me
brane with the same area are equal in this case.

C. Long chains: Yd,D„x… for x˜`

Figure 2 shows in the (d,D) plane the dashed lined
51/n(D) @42#. It separates generalized cylindersK which are
relevant perturbations for long polymer chains with EV i
teraction~such as the strip inD52 or the plate inD53)
from those which are irrelevant and for which Eq.~1.11!
applies. The latter are located in the shaded region above
line and comprise the disk inD52 and the sphere and th
cylinder in D53 and are of main interest here. For th
sphere and the cylinder inD53 we show within an expan
sion in «542D that the first-order result forYd,D(x) given
by Eqs. ~2.30! and ~2.1! is consistent with the expecte
power law~1.8! and we determine the corresponding unive
sal amplitudeAd,D to first order in« for d5D, 3, and 2.
These results in conjunction with the known value forA2,2 in
D52 are used in order to derive improved estimates forA3,3
and A2,3 corresponding to a sphere and a cylinder, resp
tively, in D53.

The lined51/n(D) itself corresponds to marginal pertu
bations leading to a behavior which in general is differe
@43# from Eq. ~1.8!. We shall discuss neither this nor th
crossover from marginal to power-law behavior which m
arise for points close above the line. Instead, in the casd
52 andD,4 we shall obtain the« expansion ofA2,D by
analytic continuation ind from the corresponding value fo
d.2.
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In the following we setd to an arbitrary value with 2
,d<D. By insertingQd,D(h) from Eq. ~2.30! in Eq. ~2.1!
one finds

Yd,D~x→`!→VdF2ah2
«

4
Cd~h!G1O~«2!, h5x2/2,

~2.47!

where a5(d22)/2.0. The first term in square bracke
stems fromPd

[0] (h) in Eq. ~2.30b! and Cd(h) is given by
Eq. ~2.31!. Both the termVd /d on the rhs of Eq.~2.1! and
the sum of the terms following2Cd(h) on the rhs of Eq.
~2.30c! are subdominant to the leading behavior in E
~2.47!. According to Appendix A this leads to

Yd,D~x→`!→Vd2ahF12
«

4 S Ed1
ln h

2 D G1O~«2!

5Vd2aF12
«

4
EdGhF12

«

4

ln h

2 G1O~«2!.

~2.48!

The constantEd is given by

Ed52
4p2

a
Bd2

3

2
1 ln 21

C~d/2!

2
, ~2.49!

where for d5D we have to considerE4 only. The corre-
sponding numbersBd are

FIG. 2. Diagram of generalized cylindersK which behave—in
the renormalization-group sense—as relevant or irrelevant pertu
tions for nonadsorbing polymers. The parameterd<D characterizes
the shape ofK, andD is the spatial dimension@see Eq.~1.3!#. The
point (d,D)5(2,2) corresponds to a disk inD52 and the points
(3,3) and (2,3) correspond to a sphere and an infinitely elong
cylinder in D53, respectively. The line withD5Duc54, and ar-
bitrary d represents the upper critical dimension where the polym
behave like ideal chains and from which the perturbative expan
in «542D starts in order to study the effects of the EV interactio
The open circles indicate points (d,D) for which d21/n(D)50.
These points are connected by the dashed line so that within
shaded regionaboveit, the power law~1.8! applies andK repre-
sents an irrelevant perturbation. The paths indicated by the ar
are discussed in the main text.
.

B450, B3'0.010 47, B25
1

8p2
. ~2.50!

The result in the second line of Eq.~2.48! for the behavior of
Yd,D(x→`) is consistent with the power law~1.8! since

h1/(2n)5221/(2n)x1/n5hF12
«

4

ln h

2 G1O~«2! ~2.51!

@see Eq.~2.24! for N50#. The universal amplitudeAd,D is
determined by Eqs.~2.48! and ~2.49! to first order in«54
2D with the results

AD,D52p2H 11
«

4 F122 lnp2
ln 2

2
2

3CE

2 G J
'19.739~120.625«!1O~«2!, ~2.52a!

A3,D52pH 11
«

4 F8p2B31
1

2
1

ln 2

2
1

CE

2 G J
'6.283~110.490«!1O~«2!, ~2.52b!

A2,D5«2p3B2'0.785«1O~«2!, ~2.52c!

where Eq.~2.50! has been used.
From Eq. ~2.52c! it is evident thatA2,D vanishesin the

limit D↗4 which reflects the fact that for ideal chains, f
which 1/n52 and the condition~1.9! is violated, the power
law ~1.8! does not apply@43#. However, we succeeded i
calculating the amplitudeA2,D for D,4 to first order in«
542D by following a path in the (d,D) plane which cir-
cumvents the point (2,4) as indicated by arrows in Fig. 2 a
along which the power law~1.8! doesapply with a positive
amplitudeAd,D . Accordingly, first one has to exponentia
Eq. ~2.48! with respect to« for a.0 fixed in order to obtain
the power law~1.8!, and then one has to perform the lim
d2252a↘0 for the resulting amplitudeAd,D for D54
2« fixed.

We note that the values forA3,3 and A2,3 which follow
from Eqs.~2.52! by setting«51 are estimates which depen
on the path taken. For«51, e.g., Eqs.~2.52a! and ~2.52b!
lead to the different estimates 7.39 and 9.36, respectively
the same quantityA3,3 @the corresponding paths in the (d,D)
plane are indicated by the two upper arrows in Fig. 2#. This
discrepancy is caused by the present perturbative calcula
of Ad,D .

This unpleasant feature can be cured. As mentioned
Sec. I B, the power law~1.8! is a special consequence of th
small radius expansion~SRE! in Eq. ~1.11!. Via the polymer
magnet analogy, this operator expansion is related to a
responding SRE in a field theory. This allows one to und
stand not only the mechanism behind the SRE in terms
perturbative field theoretic methods forD slightly below 4
~as demonstrated in Appendix B! but also to use nonpertur
bative methods forD52 @44# which incorporate the resul
A2,253.81 ~see the end of Appendix B!. Improved estimates
for the amplitudesA3,3 andA2,3 can be deduced by combin
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ing the « expansion ofAd,D in Eq. ~2.52! with the above
value forA2,2. To this end we assume thatAd,D is a smooth
function ofd andD. We consider the following interpolation
schemes@45# for the functionsf («542D)5AD,D , A2,D ,
AD21,D , and A62D,D , which appear as curves in theAd,D
surface shown in Fig. 3.

~a! Pure polynomial,

f ~«!5 f a~«![ f ~0!1a1«1a2«2. ~2.53a!

~b! ~1,1!-Padéform,

f ~«!5 f b~«![ f ~0!1
b1«

11b2«
. ~2.53b!

For AD,D and A2,D the coefficients on the rhs of Eqs
~2.53! are fixed by Eqs.~2.52a! and ~2.52c!, respectively, in
conjunction with f (2)5A2,2. Note that the correspondin
paths in the (d,D) plane are straight lines, i.e., in particul
smoothpaths, so thatAd,D behaves smoothly as a function
« along these paths~see Fig. 3!. We obtain estimates forA3,3
and A2,3 by the corresponding mean valuesf m(«)5@ f a(«)

FIG. 3. The universal amplitudeAd,D corresponds to a two
dimensional surface over the base plane (d,D) ~compare Fig. 2!.
The full dot corresponding toA2,2 and the thick solid lines represen
the known parts of this surface. The solid parts of the dashed an
the dotted lines indicate the slopes of these lines at their end p
D54 according to Eq.~2.52!. The dashed lines themselves inclu
ing the desired estimates forA3,3 andA2,3 ~open squares! display the
corresponding mean valuesf m(«)5@ f a(«)1 f b(«)#/2 of the two
interpolation schemes described in Eq.~2.53!. The same holds for
the dotted lines and for the two values ofAd,D for (d,D)
5(2.5,3.5), which have been calculated for a self-consiste
check. These two values are connected by the short full line in o
to indicate the deviation caused by the fact that the two dotted l
miss each other slightly~for the exact surfaceAd,D , of course, the
two dotted lines do intersect at this point!. The smallness of the
deviation underscores the reliability of the interpolation scheme
1fb(«)#/2 for «51 and use the difference between the tw
valuesf a(1) and f b(1) as an estimate for the error. For th
sphere this leads to

A3,359.8260.3 ~2.54!

and for the cylinder to

A2,351.2360.2. ~2.55!

So far the« expansion ofA3,D in Eq. ~2.52b! has not been
used. Now it can serve as a check for the reliability of t
interpolation method leading to Eqs.~2.54! and ~2.55!. In
combination with the known curveAd,452pd/2/G@(d
22)/2#, Eq.~2.52b! determines the plane tangent to theAd,D
surface at (d,D)5(3,4) which leads together with the valu
for A2,3 in Eq. ~2.55! to approximations of the form~2.53!
for the curveAD21,D . Corresponding approximations for th
curve A62D,D follow from the known tangent plane a
(d,D)5(2,4) and the value forA3,3 in Eq. ~2.54!. The re-
sulting mean valuesf m(«) are shown as dotted lines in Fig
3. A satisfactory self-consistency check for the accuracy
provided by the observation that at the particular po
(d,D)5(2.5,3.5) at which the two exact dotted lines shou
cross, the approximate ones in Fig. 3 are only slightly off
the small amount of 0.3.

D. The complete scaling functionY3,3„x…

The full scaling functionYd,D(x) describes the crossove
between its analytic behavior forx5Rx /R→0 and the
power law~1.8! for x→` as discussed in Secs. II B and II C
respectively. Here we consider the complete functionY3,3(x)
corresponding to a sphere inD53. The global behavior of
Yd,D(x) is conveniently characterized in terms of the fun
tion

Qd,D~x!5
1

x FYd,D~x!2
Vd

d G5Vd

Qd,D~h!

x
, h5x2/2,

~2.56!

where Qd,D(h) is defined in Eq.~2.2!. According to Eq.
~2.40!, the valueQd,D(0) is related to the surface tensio
Ds in the Helfrich-type expansion~1.7! and the first and
second derivatives ofQd,D(x) at x50 are related to the cor
responding first- and second-order curvature contributio
respectively~compare Sec. II B!. In the opposite limitx
→` the functionQd,D(x) exhibits the power law

Qd,D~x→`!→Ad,Dx1/n21 ~2.57!

as implied by Eqs.~2.56! and ~1.8!.
In order to derive an estimate forQ3,3(x) we consider the

pathd5D @compare the derivation of Eq.~2.54!# and intro-
duce a functionF(x,«) by

QD,D~x!5AD,D@F~x,«!#1/n21. ~2.58!

Both the leading behavior for largex, i.e., F(x→`,«)→x,
and the smallx behavior of F are determined byinteger
powers of x. Due to the corresponding absence of ter
; ln x in the « expansion
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F~x,«!5F0~x!1«F1~x!1O~«2!, ~2.59!

a reasonable first estimate forF(x,1) is to truncate Eq.~2.59!
after the second term and to set«51. By using Eq.~2.58!
this leads to the estimate

Q3,3~x!'A3,3@F0~x!1F1~x!#1/n21, ~2.60!

with A3,359.82 from Eq.~2.54! and the exponent valuen
50.588 in three dimensions. The functionsF0(x) andF1(x)
can be inferred from Eqs.~2.30! and ~2.31!, where the in-
verse Laplace transforms can be carried out numerically~see
Table II in Appendix A!, and from Eq.~2.52!. In particular
one needs the first two terms of the« expansion

PD
[0]~h!5P4

[0]~h!1«F2h1L t→hH 1

2t2

@K0~At!#2

@K1~At!#2J G
1O~«2! ~2.61!

of PD
[0] (h) in Eq. ~2.30b!.

The expression on the rhs of Eq.~2.60! is shown in Fig. 4
as the lower full line labeled ‘‘EV.’’ By construction it re
produces forx→` the power law~2.57! with the accepted
exponent and our best value in Eq.~2.54! for the amplitude
A3,3. To judge the degree of accuracy of Eq.~2.60! for gen-
eralx we compare it with the behavior of Eq.~2.56! for small
x as predicted by Eqs.~2.40!–~2.44!. Note that ford53

FIG. 4. Scaling functionQ3,3(x)5x21@Y3,3(x)24p/3# for the
solvation free energy of a sphere in three dimensions@compare Eqs.
~1.5! and ~2.56! with V354p#. The lines labeled ‘‘ideal’’ corre-
spond to ideal chains and the lines labeled ‘‘EV’’ correspond
chains with excluded volume interactions between the monom
The dashed lines display the power law~2.57!. For ideal chains
Q3,3(x)54(2p)1/212px happens to be a linear function ofx @com-
pare Eqs.~3.9! and~3.11! in I#. For chains with EV interactions the
dashed line represents the power law~2.57! with the accepted ex-
ponentn50.588 in three dimensions and our best estimateA3,3

.9.82 for the amplitude. The dotted line displays the polynom
quadratic inx, characterizingQ3,3(x→0) for chains with EV inter-
actions@see Eqs.~2.40! and ~2.56!#. The small difference betwee
the lower full line and the dotted line for values ofx of order 1
reflects the remaining degree of uncertainty contained in our
trapolation of the« expansion to three dimensions.
fixed and for smallx the dependence ofQ3,D(x) on «54
2D is fully captured by the« dependence of the surfac
tensionDs and of the curvature energiesDk1 , Dk2, and
DkG as given by Eqs.~2.41!–~2.44!. Discarding contribu-
tions of order«2 in Eqs. ~2.41!–~2.44! and setting«51 in
the first-order terms leads to the dotted line in Fig. 4. T
dotted line and the lower full line deviate only slightly from
each other and should both provide a rather accurate esti
for the scaling functionY3,3(x).

Figure 4 shows both the behavior for chains with E
interaction and for ideal chains. It is evident that the pow
law ~2.57! not only determines the asymptotic behavior
the scaling function forx→` but it also influences the be
havior down to values ofx of order unity. This implies that
for a quantitative analysis it is indispensable to take the
havior ~2.57! into account, in particular the accurate value
the amplitudeA3,3. Note thatQ3,3(x) exhibits smaller values
for chains with EV interaction than for ideal chains. This
consistent with the exponent 1/n21'0.70 for chains with
EV interaction being smaller than the exponent 1/n2151
for ideal chains. This difference in behavior is in accordan
with the general observation that the EV interaction effe
tively reduces the depletion effect of the immersed parti
~compare the related discussions in Secs. II B and II C!.

III. DEPLETION INTERACTION BETWEEN PARTICLES

First, we consider the effective interaction between a t
rod and a planar wall confining the polymer solution. This
another example which demonstrates the importance of
qualitative difference between the behavior for ideal cha
and chains with EV interaction which we have discussed
Sec. I B. Then, we consider the effective interaction betwe
two or three small spherical particles in the unbounded so
tion. WhenR is small compared withRx and the distances
between the particles, the small radius expansion~1.11! ap-
plies. On the other hand, if bothR and some of these dis
tances are small compared toRx and the remaining dis-
tances, operator expansions slightly more complicated t
Eq. ~1.11! are expected to hold. In particular, we shall co
sider a ‘‘small dumbbell’’ expansion for two spheres. F
nally, we compare our results with those of the PHS mo
@5#.

A. Interaction of a thin rod with a planar wall

In view of the depletion-driven adsorption of colloida
rods onto a hard wall@46#, it is of interest to consider a
cylinder with radiusR and lengthl immersed parallel to and
at a distanceD of closest approach surface-to-surface from
planar wallW in a dilute polymer solution~compare I!. We
consider the special caseR!D,Rx andD,Rx! l . Using Eq.
~4.19! in I we obtain the corresponding effective free ener
of interaction in three dimensions,

DFdepl~D!52npkBTA2,3lR
2~Rx /R!1/n@12M M

(W)~D/Rx!#,
~3.1!

with the number densitynp of the polymers in the bulk so
lution and the bulk normalized density profileM M

(W)(z/Rx)
of chain monomers in the half-space~without the cylinder!
as a function of the distancez from the wallW. This univer-
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sal density profile can be determined experimentally, e.g.
neutron reflectivity@47# ~compare also Fig. 5 in I!. Note that
Eq. ~3.1!, in which the universal amplitudeA2,3 enters@see
Eq. ~2.55!#, is only valid for chains with EV interaction
Equation~3.1! gives rise to anattractive interaction between
the rod and the wall. The rhs of Eq.~3.1! is fixed by well-
defined quantities and is independent of nonuniversal mo
parameters@48#.

For a dilute solution of long rods withR!Rx! l , Eq.
~3.1! determines the enrichment of the rod number den
c(D) which occurs at a distanceD from the wall of the order
of Rx . Arguing as in the derivation of Eq.~11! in Ref. @46#,
one finds

c~D!'2~cbD/ l !exp@2DFdepl~D!/kBT#, ~3.2!

wherecb is the number density of the rods in the bulk so
tion.

B. Depletion interaction between spherical particles

In Eqs. ~1.16!–~1.18! the interaction between sma
spherical particles is expressed in terms of the unive
small sphere amplitudeAD,D and the monomer density co
relation functionsCm of a polymer chain in unbounded infi
nite space. Numerical values of the former for several spa
dimensionsD are summarized in Table I. For the latter w
note the relations

E
RD

dDr AC2~rA ,rB!5R x
2/n ~3.3!

and

E
RD

dDr CC3~rA ,rB ,rC!5R x
1/nC2~rA ,rB!, ~3.4!

which follow from the defining Eqs.~1.13! and ~1.17!.
Simple limiting behaviors arise if the relative distancer AB
5urA2rBu—albeit being large on the microscopic scale—
much smaller than other mesoscopic lengths. For the
correlation @15,17,18,49# this limiting behavior takes the
form

C2~rA ,rB!→sr AB
2(D21/n)R x

1/n , r AB!Rx . ~3.5!

For the triple correlation, one finds

C3~rA ,rB ,rC!→sr AB
2(D21/n)C2S rA1rB

2
,rCD ,

TABLE I. Numerical values of the small sphere amplitudeAD,D

and of the short-distance amplitudes for chains with EV interac-
tion and for ideal chains.

D 4 3 2 1

AD,D 19.739 9.8260.3 3.810 ~marginal!
AD

(id) 19.739 6.283 0~marginal!

s 0.101 0.13 0.278 1
s (id) 0.101 0.318 ` (marginal)
y

el

y

al

al

ir

r AB!Rx ,urC2~rA1rB!/2u. ~3.6!

Here s is a universal bulk amplitude. For ideal chains,s
5s (id) is only defined for spatial dimensionsD.2 for which

s (id)5p2D/2GS D

2
21D . ~3.7!

For chains with EV interaction, however,s remains finite
down to D51. Numerical values ofs for severalD are
summarized in Table I. In Appendix C we show how the
values can be obtained.

For ideal chains the correlation functionsC2 andC3 can
be calculated in closed form. For the pair correlation, o
finds for arbitraryD,

C2
(id)~rA ,rB!5p2D/2R x

2r AB
22DFGS D

2
21,%2D

2%2GS D

2
22,%2D G ~3.8!

with G the incomplete gamma function@38# and %2

5r AB
2 /(2R x

2)5zAB
2 /2. ForD53, Eq. ~3.8! reduces to

C2
(id)~rA ,rB!5p23/2~Rx /zAB!S~zAB

2 /2!, ~3.9!

where

S~%2!5~112%2!Ap erfc%22% exp~2%2! ~3.10!

is the Fourier transform of the Debye scattering functi
@15,17,18#. For the triple correlation one finds inD53

C3
(id)~rA ,rB ,rC!5

1

2p5/2FS@~zBA1zAC!2/2#

zBAzAC

1
S@~zAB1zBC!2/2#

zABzBC

1
S@~zAC1zCB!2/2#

zACzCB
G . ~3.11!

One can verify that the expressions~3.9! and~3.11! obey the
short distance relations~3.5! and~3.6! with s (id)5p21 from
Eq. ~3.7!.

The limiting behavior~1.16! ceases to apply if the mutua
distance between the small spheres becomes compa
with the order of their radii. As an illustration we consid
two spheresA andB with equal radiiRA5RB5R. While for
R!r AB ,Rx the reduced free energy of interactionnpf A,B

(2) is
given by Eq.~1.16a! and, in particular, forR!r AB!Rx by

f A,B
(2)→2~AD,D!2sR2(D21/n)R x

1/nr AB
2(D21/n) ~3.12!

due to Eq.~3.5!, one finds forR, r AB!Rx with arbitrary
r AB /R that

f A,B
(2)→2~22M!AD,DRD21/nR x

1/n . ~3.13!

Here

M5M~D/R! ~3.14!
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is independent ofRx and is a universal function ofD/R with

D5r AB22R ~3.15!

the distance of closest approach surface-to-surface betw
the two spheresA andB. Equation~3.13! holds because on
the large length scale set byRx the ‘‘dumbbell’’ composed
of the two spheres with smallR andD can be considered in
leading order@50# as a pointlike perturbation as in Eq.~1.11!
in conjunction with the lower part of Eq.~1.12!, but with the
amplitudeAD,D replaced by an amplitude functionMAD,D
which depends onD/R. Consistency of Eqs.~3.13! and
~3.12! requires that

22M→AD,Ds~D/R!2(D21/n), D/R→`. ~3.16!

In the opposite limitD/R→0 of two touching spheres
@19#~b! the functionM(D/R) approaches a constant larg
than 1 because the dumbbell is a stronger perturbation th
single sphere. This small dumbbell operator expansion
be used for a calculation not only of the solvation free ene
of the dumbbell but also of other observables such as
monomer density profile at distances from the dumbb
which are much larger thanR andD.

Similar to the small radius expansion~1.11! the small
dumbbell expansion has—via the polymer magnet analog
its counterpart in theN-component field theory. An easy wa
to obtain the explicit expression forMAD,D is to calculate
the energy density profilê2F2(r )&db, crit at the critical point
of the field theory in the presence of the two spheres w
radiusR and Dirichlet boundary conditions which represe
the dumbbell~db! centered at the origin, and to compare t
result with the corresponding result as derived from the sm
dumbbell expansion in the form

MAD,D5 lim
r→`

^2F2~r !&db, crit2^2F2&b,crit

RD21/n^C~0!F2~r !&b,crit

. ~3.17!

Here C is the normalized energy density introduced in E
~C7! and the rhs of Eq.~3.17! is taken in the limitN↘0. The
evaluation of the numerator is simplified by means of a c
formal transformation relating it to the corresponding qua
tity between twoconcentricspheres@34#~b!.

For ideal chains—corresponding to a Gaussian fi
theory—the latter quantity is known and leads to

M52~u21/22u1/2!D22(
l 50

` S D231 l

l D
3@u2[ l 1(D22)/2]11#21, ~3.18a!

whereu is related to the dumbbell parameterD/R via

1

2
~u1u21!5112

D
R

1
1

2 SDRD 2

. ~3.18b!

Equation~3.18! provides an explicit expression forf A,B
(2) in

Eq. ~3.13!. In particular, one can check Eq.~3.16! by using
the relationsAD,D

(id) s (id)52 andn2152 valid for ideal chains.
In D53 one finds the leading behavior@51#
en
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e
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d

lim
Rx→`

f A,B
(2)

2 f A
(1)
→2~12 ln 2!1

D
R

1

6 S ln 22
1

4D , D/R→0,

~3.19!

which determines not only the solvation free energy of, b
also the depletion force between, two small touching sphe
in a dilute solution of ideal chains inD53. Numerical evalu-
ation of Eq.~3.18! for arbitrary D/R in D53 shows that the
crossover off A,B

(2) /(2 f A
(1)) from the behavior given on the rh

of Eq. ~3.19!, valid for D!R!Rx , to the behavior2R/D,
valid for R!D!Rx , is monotonic and without inflection
point. Since this holds also for the crossover fromR!D
!Rx to R!Rx!D as implied by Eqs.~3.9! and~1.16a!, one
finds that upon increasing the distanceD the reduced free
energy of interactionnpf A,B

(2) between two small spheres
monotonically increasing and the attractive for
(]/]D)npf A,B

(2) is monotonically decreasing in the who
range ofD.

This is different from the behavior of a particle with sma
radius interacting with aplanar wall ~compare Sec. III A and
I!. In this case the attractive force (]/]D)DFdepl is not
monotonically decreasing with increasingD but exhibits a
maximumat a distanceDmax of the orderRx since the mono-
mer density profileM M

(W) in Eq. ~3.1! has a point of inflec-
tion. This qualitatively different feature applies not only to
thin cylinder but also to a small spherical particle near a w
@52#. Another remarkable difference between the two case
the behavior of the force in the limitR,D!Rx . While in the
case of two spheres (]/]D)npf A,B

(2) increases asR x
1/n for Rx

→`, the force (]/]D)DFdepl between the particle and th
wall exhibits afinite limit for Rx→`. This is plausible since
the particle eventually moves into a region which is alrea
depleted due to the presence of the wall.

It is interesting that for two touching spheres in a soluti
of ideal chains inD53 the form of the normalized interac
tion free energy

f A,B
(2) /~2R!352

a

2
~Rx /R!2, R!Rx , ~3.20a!

for small radius as implied by Eqs.~3.19!, ~1.5!, ~1.8!, and
A3

(id)52p is very similar to its counterpart

f A,B
(2) /~2R!352

b

2
~Rx /R!2, R@Rx , ~3.20b!

for large radius following from the Derjaguin approximatio
@53#, which is supposed to be exact in this limit. Both form
display the same power in the length ratioRx /R and their
amplitudes a5p(12 ln 2)50.964 and b5(p/2)ln 251.09
are nearly the same. Although we do not have an exp
expression for the normalized interaction free energy
Rx /R of order unity, we expect that either of the two limi
ing forms ~3.20! provides a reasonable approximation ev
in the intermediate regime. This is confirmed by the co
puter simulation results of Ref.@12# in which the chain is
modeled as anN-step random walk on a simple cubic lattic
with N510 or 100 and the diameter 2R of each of the two
touching spheres equals 10.5 lattice constants. This co
sponds to the values 0.06 or 0.60 of12 (Rx /R)2
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5 1
6 N/( 1

2 10.5)2 and each of our two forms leads to estima
which are fairly close@54# to the simulation results 0.04 o
0.50 displayed in Fig. 3 of Ref.@12# for the quantity
2V̄2b* /scol

3 there, which is to be identified with
2 f A,B

(2) /(2R)3 here.
In order to be able to appreciate the results for the de

tion interaction of particles with small radiiR as obtained in
this subsection, it is instructive to compare them with tho
of the PHS model@5# extrapolated to the case of smallR
@55#. A force displaying a maximum at a distanceDmax of
orderRx for the effective interaction between a particle a
a planar wall and a monotonical decrease of the force w
increasingD for two particles of equal size are also foun
within the PHS model when extrapolated toR!Rx . How-
ever, the PHS model does not produce the decrease o
absolute values of the free energy of interaction and of
force with decreasingR but in the limitR→0 rather leads to
finite quantities which are independent ofR. For example, in
the case of a thin cylinder or a small sphere near a wall
maximum force in the PHS model is not proportional
Rd21/nR x

1/n21 as for a flexible chain but rather toR x
d21 . In

the particle-wall case the PHS model also fails to predict t
the force becomes independent ofRx for R,D!Rx .

Even for the much studied case of alarge sphere radius,
i.e.,R@Rx , for which the PHS approximation is expected
work best, the deviation of the PHS approximation from t
Derjaguin result is considerable. The PHS approximation
plies b51 in Eq. ~3.20b! @56#, i.e., it leads to a free energ
f A,B

(2) for two large touching spheres of equal size whose
solute value is too small by about 10 %. The same ra
(p/2)ln 2 between the Derjaguin result and the PHS appro
mation appears in the case of a single large sphere touc
a planar wall~compare footnote@28# in Ref. @57#!.

IV. SUMMARY AND CONCLUDING REMARKS

We have studied the interaction of mesoscopic partic
~spheres, cylinders, and planar walls! with a dilute solution
of long, flexible, free, and nonadsorbing polymer cha
which are depleted by the particles in good or theta solve
The properties for a single particle as well as the effect
interaction between two or more particles have been con
ered.

One topic of main concern has been to investigate i
systematic and quantitative way how the excluded volu
~EV! interaction between the chain monomers modifies
ideal chain behavior. Our results are in line with the pla
sible conjecture thatweaker depletion effects arise from
chains with EV interaction than from ideal chains with t
same Flory radius. Another main topic has been the desc
tion of situations in which the particle radiusR is small com-
pared with the Flory radiusRx so that the chain will coil
around the particle~compare Fig. 1! and in which the classic
PHS treatment ignoring chain flexibility@5# is clearly of no
use. For example, consider the limitR/Rx→0 in which the
spherical or cylindrical particle degenerates to a point o
thin needle, respectively, on the scale ofRx : for flexible
polymers both the solvation free energy of the particle a
its polymer-mediated free energy of interaction with oth
particles vanishes in this limit, whereas these two quanti
s
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remain finite for the rigid polymers of the PHS model.
Our analysis is based on the polymer magnet anal

which maps the polymer problem with interactions within
single polymer chain and between a polymer chain an
particle onto a Ginzburg-Landau (F2)2 field theory in the
outer space of the particle with the order parameter fieldF
vanishing on the particle surface~see Ref.@19#, I, and Sec.
II A !. This allows us to resort to basic field-theoretical too
such as the renormalization-group and short-distance ex
sions which turn out to be extremely useful for the und
standing of the polymer conformations in the presence of
particle~s!.

In the following we summarize our main results starti
with the case of a single particle. The evaluation in I of t
solvation free energy for immersing the particle in a the
solvent~i.e., ideal chains! has been generalized to the gene
case of a good solvent~i.e., chains with EV interaction! by
calculating the universal scaling functionYd,D(Rx /R) @see
Eq. ~1.5!#. For estimates based on a systematic perturba
approach it is useful to introduce the particle shape o
‘‘generalized cylinder’’ @see Eq.~1.3!# which is character-
ized by the space dimensionD and an internal dimensiond
encompassing cylinder, sphere, and wall as special ca
The general results forYd,D(x) to first order in«542D are
given by Eqs.~2.1! and ~2.30!.

~i! Our investigations in Sec. II B of generalized cylinde
with small curvature, i.e.,R@Rx , provide strong evidence
for the validity of the local and analytic Helfrich-type expa
sion conjectured in Eq.~1.7!. With the help of Eq.~2.39! this
expansion can be generalized to arbitrary spatial dimens
D so that we were able to obtain explicit expressions for
universal coefficientsDs, Dk1 , Dk2, andDkG appearing in
the Helfrich Hamiltonian to first order in«542D. While
the results for the spontaneous curvature energyDk1 in Eq.
~2.42! and the mean and Gaussian bending rigiditiesDk2
andDkG in Eqs.~2.43! and~2.44! are new, the result in Eq
~2.41! for the surface tensionDs has implicitly been noted
before@see Eq.~4.7! in Ref. @58##. All coefficients have ab-
solute values smaller than those of their ideal chain coun
parts. The latter are given by the above expressions fo«
50. The decrease of the depletion effects due to the
interaction can be traced back to a corresponding behavio
the profileME of the end density@see Eqs.~2.1! and ~2.2!#.
The simplest case is the surface tensionDs which follows
from the profileME near a planar wall and for which th
decrease is consistent with a corresponding decrease@19#~a!
of the surface exponentaE in the behaviorME;(z/Rx)

aE

for distancesz from the wall much smaller thanRx .
~ii ! For small particle radius, i.e.,R!Rx , our results for

Yd,D(x) to first order in« confirm the validity of the power
law ~1.8! within the region~1.9! and allow us to determine
the « expansions of the universal amplitudeAd,D @see Eq.
~2.52!#. The region~1.9! is shown shaded in Fig. 2 and in
cludes the interior point (d,D)5(2,3) which represents a
cylinder in three dimensions. This is different from the ca
of ideal chains in which Eqs.~1.8! and ~1.9! are not valid
below and on the lined52. Reliable estimates for the am
plitudesA3,3 andA2,3 corresponding to a sphere and a cyli
der, respectively, for chains with EV interaction in three d
mensions have been obtained from the plausible assump
that the amplitudeAd,D as a function ofd and D forms a
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regular surface over the base plane (d,D) ~see Fig. 3!. The
combination of the value ofA2,2 corresponding to a disk in
two dimensions~see Table I! with the « expansions ofAd,D

in Eq. ~2.52! leads to the estimates in Eqs.~2.54! and~2.55!
for A3,3 andA2,3.

~iii ! An estimate of the full scaling functionY3,3(x) for
the solvation free energy of a sphere in three dimension
shown in Fig. 4 in terms of the functionQ3,3(x) @see Eq.
~2.56!#. This shows the crossover from the small curvatu
regimex!1 with the coefficientsQ(0), Q8(0), andQ9(0)
of its Taylor expansion about the regular pointx50 being
simply related to the surface tensionDs, the energyDk1 of
spontaneous curvature, and the bending rigiditiesDk2 and
DkG , respectively@see Eqs.~2.40! and ~2.56!#, to the small
radius regime x@1 with the power law Q3,3(x→`)
→A3,3x

1/n21. As expected, the curve for chains with EV in
teraction isbelow the corresponding curve for ideal chain
which implies a smaller solvation energy. For chains w
EV interaction the exponent 1/n21 is not a positive intege
and the expansion ofQ3,3(x) or Y3,3(x) aboutx50 cannot
be a polynomial with a finite number of terms. This is
contrast with the solvation free energy of a sphere in a s
tion of ideal chains in which caseQ(x) is a linear function of
x ~see Ref.@11# or I!.

We continue by summarizing our results for the intera
tion between particles with a small radius. Since the val
in Eqs. ~2.54! and ~2.55! of the amplitudesA3,3 and A2,3
completely determine the Boltzmann weight in Eq.~1.11! of
a small sphere and a thin cylinder, the interactions of th
particles with other distant particles or walls are complet
determined, too@34,36,37,52,59#.

~iv! We have studied the interaction between a wall an
long thin cylindrical particle a distanceD apart with radiusR
and lengthl for the caseR!Rx ,D! l . The dependence onD
of the polymer-mediated free energy of interaction is prop
tional to that of the monomer densityM M

(W) of a dilute solu-
tion of chains in the half-spacewithout the particle@see Eq.
~3.1!#. The same applies for a small sphere near a wall~com-
pare I!. SinceM M

(W) has a point of inflection atD;Rx , the
attractive mean force between a wall and a thin cylinder
between a wall and a small sphere somewhat surprisin
passes through a maximum asD increases. The increas
;D 1/n21 of the force per unit lengthl D2d and unit bulk
pressurenpkBT with the distanceD in the regionR!D
!Rx is a consequence of its length dimensiond21, its in-
dependence ofRx , and of the fact that the particle radiusR
enters the force only in the form of the power lawRd21/n

according to Eq.~1.11!. Our study of the situation of long
chains is complementary to that of short chains, i.e.,Rx
!R, considered in Ref.@46#. In the latter case the attractiv
mean force of depletion is monotonically decreasing asD
increases.

~v! The interaction between two small spherical partic
A, B of equal size and with a distancer AB5D12R between
their centers has been studied in Sec. III B both forR
!D,Rx and for R,D!Rx . In the former case we use Eq
~1.16a! expressing the interaction in terms ofAD,D , R, and
the universal monomer density correlation functionC2 of a
single chain in unbounded space. In the latter case
‘‘dumbbell’’ composed of the two spheres is small on t
is
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scale ofRx and can in leading order be considered as
pointlike object. This gives rise to an expansion similar
Eq. ~1.11! in conjunction with the lower part of Eq.~1.12! in
which, however, the amplitudeAD,D is replaced by an am
plitude functionMAD,D depending onR andD. This is an-
other type of a short-distance-like operator expansion wh
can be used not only for the effective free energy of inter
tion but also for other polymer properties—such as
monomer density profile—induced by the two spheres. B
cases overlap in the regionR!D!Rx in which the interac-
tion free energyf A,B

(2) per unit bulk pressurenpkBT is given
by Eq. ~3.12!. Numerical values ofAD,D and the universal
bulk amplitudes in Eq. ~3.12! are summarized in Table I fo
various space dimensions and both for ideal chains
chains with EV interaction. The value fors in D52 derived
in Appendix C is a new result for a self-avoiding chain in t
unbounded plane. ForD53 and ideal chains we explicitly
calculate the two functionsC2 andMAD,D @see Eqs.~3.8!
and~3.18!# and thus present a complete and explicit expr
sion for the free energy of interaction between two sm
spherical particles to leading order in the small quan
R/Rx . In contrast to the polymer-mediated force betwee
small sphere and a wall, for two spheres of equal size
force is monotonically decreasing in the whole range ofD.
For the case of two touching spheres and arbitrary value
R/Rx we consider an approximative form off A,B

(2) @compare
Eq. ~3.20!# and compare it with the results@12# of simula-
tions.

~vi! As an illustration for the nonpairwise character of t
depletion interaction between particles, we have evaluate
explicit analytic expression for the three-particle interacti
f A,B,C

(3) in the case of small spherical particles and ideal cha
in three dimensions. The expression follows by inserting
triple correlation function in Eq.~3.11! of the monomer den-
sity in the unbounded solution in Eq.~1.16b! and using that
in this caseD21/n51 andAD,D5A3

(id)52p. The result is
valid in the regionR!r i j ,Rx with r i j denoting the relative
distancesr AB , r AC , or r BC between the spheres and
complementary to the three-body results presented in R
@12# with R of the order ofRx . In order to convey an idea o
the relative importance of one-, two-, and three-particle c
tributions, we summarize the results

~ f (1), f A,B
(2) , f A,B,C

(3) !52pRR x
2S 1,22

R

r AB
,

2R2
r AB1r BC1r CA

r ABr BCr CA
D ~4.1!

for the special caseR!r i j !Rx . For three small sphere
configurated on an equilateral triangle with edge lengthr, the
interactionf A,B,C

(3) is related tof A,B
(2) for two spheres at a dis

tance 2r via

~ f A,B,C
(3) !r i j 5r /~2 f A,B

(2) !r AB52r56R/r . ~4.2!

This relation holds for an arbitrary ratior /Rx provided R
!r ,Rx .

Another interesting type of three-body depletion intera
tion arises for two spherical particles near a planar wall
their radii are small, this situation can again be system
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cally investigated by means of Eq.~1.11! and the lower part
of Eq. ~1.12!. In the same spirit the investigations of thre
body interactions could be supplemented to cover case
which the distance between two of the spheres~or between
one of the spheres and the wall! becomes of the order ofR or
smaller by means of the ‘‘small dumbbell’’ expansion~or an
expansion which applies to a sphere close to a planar
@52#!.

Finally, we summarize some of the field-theoretic dev
opments on which our treatment of the particle-chain int
action is based.

~vii ! After a brief outline of the polymer magnet analog
in Sec. II A we relate for a generalized cylinderK immersed
in a dilute polymer solution the density profileME of chain
ends to the local susceptibility in the corresponding magn
system@see Eq.~2.27!#. For nonadsorbing chains the corr
sponding order parameter fieldF vanishes at the surface o
the particle. With the Gaussian order parameter correla
function outsideK as the unperturbed propagator we u
renormalized perturbation theory with respect to a (F2)2 in-
teraction in order to obtain a systematic expansion in the
interaction of the polymer quantities below the upper criti
dimensionDuc54. The behavior of our one-loop expressio
@see the functionCd(t) in Eq. ~2.31!# in the limits corre-
sponding to largeR and smallR is discussed in Appendix A

~viii ! We verify to first order in the EV interaction that th
samesmall radius amplitude appears fordifferentproperties
of a generalized cylinder with a small radiusR. In Appendix
B we write Eq.~1.11! in terms of fluctuating densities~op-
erators! in the equivalent field theory. The universal sm
radius amplitudeAd,D for polymers is obtained from a cor

responding critical amplitudeÂd,D in the field theory by mul-
tiplying with a universal noncritical bulk amplitude. In th
two-point correlation function with distances of the tw
points from the generalized cylinder much larger thanR

there appears the same amplitudeÂd,D at the critical point of
the field theory—where the correlation lengthj1 is infinitely
large—as in the behavior of the field-theoretic excess sus
tibility of the generalized cylinder forj1 /R@1. The latter is
related to the power-law behavior~1.8! of the function
Yd,D(x) for x5Rx /R@1. These considerations are impo
tant to understand that the mechanism behind the smal
dius expansion is basically of the same type as that be
the well-known short distance expansions in field theor
without boundaries@37,59#. Moreover, in the case of a
sphere our result forÂD,D to first order in« confirms that
this amplitude can be reduced to bulk and half-space am
tudes as predicted from a conformal mapping@60# ~see the
penultimate paragraph in Appendix B!.

~ix! By studying the energy density profile in a Gauss
field theory with boundaries, we explicitly verify that no
only a single sphere but also a ‘‘dumbbell’’ composed of tw
spheres of equal size can be considered as a pointlike pe
bation on sufficiently large length scales. At bulk criticali
the profile for the dumbbell can be obtained by means o
conformal transformation from the known profile betwe
two concentric spheres. For ideal polymer chains we t
find the explicit form@see Eq.~3.18!# of the amplitude func-
tionMAD,D addressed in paragraph~v! of this Summary.
in
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APPENDIX A: THE FUNCTION Cd„t…

The results of Sec. II are based on the behavior of
functionQd,D(h) in Eq. ~2.30!, in particular on the behavio
of Cd(h) in Eq. ~2.31!. The difficult part of the correspond
ing calculation consists in performing the sum overn and the
double integral overq and c in order to calculateCd(t)
according to Eqs.~2.15b! and ~2.31b!. Here we derive the
asymptotic expansions ofCd(t) for large and smallt, re-
spectively, and give numerical values ofCd(t) for the cross-
over region 0&t&3.

1. Cd„t… for t˜`

We calculate the coefficientsC 1
(d) andC 2

(d) in Eq. ~2.32!
for d5D, 3, and 2 by expanding the rhs of Eq.~2.31b! for
larget. To this end we need the behavior of the integrand
Eq. ~2.31b! for RmAt5At large and (y'2R)mAt5(c
21)At[s arbitrary. This is consistent with the expectatio
that for the small curvature expansion the important regi
in terms of polymer variables isR/Rx large and (y'

2R)/Rx arbitrary.
~a! d5D. SinceC 1

(D) and C 2
(D) belong to the one-loop

contribution ofQD,D(h), we need to consider onlyC 1
(4) and

C 2
(4) @compare the remarks below Eqs.~2.20! and ~2.31b!#.

The central part of the calculation consists in expand
gs(c,t,«50) in the integrand on the rhs of Eq.~2.31b! for t
large ands arbitrary. SinceWn

(1)(0)5(n11)2/(2p2) for a
51 in Eq. ~2.15b!, the quantitygs(c,t,0) is, apart from a
factor 2c2/(2p2), given by

(
n50

`

n2
I n~At!

Kn~At!
@Kn~s1At!#2. ~A1!

A first hint on how to evaluate the sum~A1! for larget can
be gained from recognizing that its leading behavior cor
sponding to a vanishing curvature must describe the h
space bounded by a planar wall. This is discussed after
~2.15c! and shows that the ration/R has the meaning of the
length of a wave vector parallel to the wall and that all valu
of n are important for which (n/R)/(mAt)5n/At[v or
(n/R)(y'2R)5ns/At are of order unity. Thus for the gen
eral expansion for larget a large number of terms will con
tribute and the sum can be replaced by an integral plus
rections according to the Euler-MacLaurin formula@61#:

(
n50

`

F~n!5E
0

`

dnF~n!1
1

2
F~0!2

B2

2!
F8~0!

2
B4

4!
F-~0!1•••. ~A2!

HereBk are Bernoulli numbers and the functionF(n) can be
read off from the expression~A1!. For case~a! the analysis
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of this expression shows that all contributions on the rhs
Eq. ~A2! apart from the integral lead to orders oft21/2

higher than needed for the first three terms on the rhs of
expansion~2.32! of C4(t) @but compare case~b! below#.
Upon introducingv instead ofn as the integration variable
the expression~A1! turns into

t3/2E
0

`

dv v2
I a~a/v!

Ka~a/v! FKaS a
s1At

vAt
D G 2

~A3!

with a5vAt. For larget the integral~A3! can be simplified
by employing theuniform asymptotic expansion for larg
ordersa of the modified Bessel functionsI a andKa which is
provided, e.g., in Eqs.~9.7.7! and ~9.7.8! of Ref. @38~a!#. In
addition to the leading term@compare the discussion afte
Eq. ~2.15c!#, now also the correction terms containing t
functionsu0 , u1, andu2 given in section 9.3.9 of the abov
reference have to be included. By inserting this simplifi
integral intogs in Eq. ~2.31b!, one finds that the first thre
coefficients on the rhs of the expansion~2.32! of C4(t) are
determined by a number of double integrals overs and v
which can all be calculated in closed form. This reprodu
the expression~2.35! for C0—and thus checks the assum
tion leading to it—and yields the expressions forC 1

(4) and
C 2

(4) in Eq. ~2.36!.
~b! d53. Due to the additional integration overq in Eq.

~2.15b!, the expression corresponding to~A1! now reads
(n50

` F(n11/2) where, using Wn
(1/2)(0)5(n11/2)/(2p)

and substitutingk5qt21/2 in Eq. ~2.15b!,

F~n!5AtnE
0

`

dk
I n~AtAk211!

Kn~AtAk211!
$Kn@~s1At!Ak211#%2.

~A4!

From the Euler-MacLaurin formula~A2! one infers that, in
contrast to case~a!, apart from the integral on the rhs also th
terms proportional toF(1/2) and toF8(1/2) have to be in-
cluded in order to obtain the first three terms on the rhs of
expansion~2.32! of C3(t). Proceeding in the same way as
case~a!, one is led to consider modified Bessel functionsI a

andKa with ordera5vAtAk211 and triple integrals ove
s, v, andk. One reproduces again the expression~2.35! for
C0 and finds, usingB251/6, the expressions forC 1

(3) andC 2
(3)

in Eq. ~2.37!.
~c! d52. In this case the procedure is quite similar to th

in case~b!. The expression corresponding to~A1! now reads
F(0)/21(n51

` F(n), where

F~n!5tE
0

`

dk k
I n~AtAk211!

Kn~AtAk211!
$Kn@~s1At!Ak211#%2.

~A5!

The analysis shows that only the integral on the rhs of
Euler-MacLaurin formula~A2! contributes to the first three
terms on the rhs of the expansion~2.32! of C2(t) @compare
cases~a! and ~b! above#. One finds again the expressio
~2.35! for C0 and in addition the expressions forC 1

(2) andC 2
(2)

in Eq. ~2.38!.
f

e

d

s

e

t

e

2. Cd„t… for t˜0

The leading behavior ofCd(h→`) in Eq. ~2.47! can be
inferred from the behavior fort→0 of the quantity

Id~t!52
t2

8p2
Cd~t! ~A6!

with Cd(t) from Eq. ~2.31!. The behavior ofId(t→0) ex-
hibits two types of leading terms. The first is the logarithm
cally divergent contribution2a/(4p2)ln(1/At) which fol-
lows from the behaviorgs(c,t,0)→2a/(4p2) for 1!c
!1/At as mentioned below Eq.~2.15d!. The second contri-
bution is independent oft and requires special care. It
evaluation is facilitated by splittingId(t) according to

Id~t!5Hd~t!1Jd~t!, ~A7a!

where

Hd~t!5E
1

`

dc c21H F12c2a
Ka~cAt!

Ka~At!
G 2

gs~c,t,0!

2gs
(as)~cAt,0!J , ~A7b!

Jd~t!5E
1

`

dc c21gs
(as)~cAt,0!. ~A7c!

Here we have used Eqs.~2.9! and~2.12! and we have added
and subtracted the functiongs

(as)(cAt,0), which is defined
as in Eq.~2.15d!, and represents the behavior ofgs(c,t,0)
for 1!c,t21/2. In Hd one can interchange the order of th
integration overc and the limitt→0 @62#, which results in
the finite limit

Hd~t→0!→Bd5E
1

`

dc c21

3H @12c22a#2gs~c,«50!1
a

4p2J , ~A8!

where the function

gs~c,«!5gs~c,t50,«! ~A9!

can be read off from Eq.~2.15b!. The integral in Eq.~A8! is
well-defined sincegs(c,0) tends to2a/(4p2) for largec
so that the logarithmic singularity is removed. The integra
Eq. ~A7c! can be carried out explicitly and leads in conjun
tion with Eqs.~A7! and ~A8! to

Id~t→0!→Bd1
a

4p2 F ln t

2
2 ln 2112

C~d/2!

2
1

CE

2 G ,
~A10!

whereC is the psi function andCE denotes Euler’s constan
Inserting Eq.~A10! in Eq. ~A6! and carrying out the inverse
Laplace transform in Eq.~2.31a! leads to the result for
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Yd,D(x→`) in Eq. ~2.48!. We conclude this subsection b
calculating the numberBd for d5D, d53, andd↘2 @see
Eq. ~2.50!#.

~a! d5D. SinceID belongs to the one-loop contributio
of YD,D , we need to considerI4 only @compare the remark
below Eqs.~2.20! and ~2.31b!#. This amounts to inserting
a51 into Eq. ~A8! and the functiongs corresponding to a
sphere inD54 which is given bygs(c,0)52(4p2)21@1
2c22#22 @63# yielding B450.

~b! d53. For 2,d,D the quantityBd does not vanish
and can be evaluated numerically. Ford53 this leads to the
value forB3 given in Eq.~2.50!.

~c! d↘2. In this limit Bd can be calculated exactly. It i
useful to substitutes5c2a in Eq. ~A8! and to carry out the
limit a5(d22)/2↘0 for fixed s in the ensuing integrand
One finds that only the term forn50 in Eq.~2.15b! survives
this limit with the result

B25
1

8p2E1

`

ds s21H 2
s21

s
11J 5

1

8p2
. ~A11!

3. Cd„t… in the crossover region 0&t&3

For the convenience of the reader, in Table II we g
some numerical values ofCd(t). From these values an ap
proximation for the full functionCd(t) can be constructed b
using its asymptotic behaviors fort→` and t→0 as de-
rived in the above subsections and by appropriate interp
tion.

APPENDIX B: SMALL RADIUS EXPANSION
TO ONE-LOOP ORDER

The relation ~1.11! for polymers is—via the polyme
magnet analogy—closely related to a corresponding sm
radius expansion~SRE! in a (F2)2 field theory with the Bolt-
zmann weight exp(2DHK$F%) which describes the presenc
of the generalized cylinderK ~compare Sec. II A and Appen
dix C!. Here we shall illustrate the SRE by considering t
two-point correlation functionat the critical point of the field
theory in one-loop order. This is particularly well suited
reveal the mechanism behind the SRE. Moreover, it provi
a significant check for the operator character of the exp

TABLE II. Numerical values of lnCd(t) @see Eq.~2.31b!#.

ln t d52 d53 d54

210 18.816 21.308 22.223
29 16.795 19.175 20.108
28 14.773 17.027 17.980
27 12.755 14.865 15.835
26 10.744 12.692 13.672
25 8.748 10.511 11.488
24 6.773 8.328 9.282
23 4.830 6.160 7.057
22 2.931 4.024 4.836
21 1.085 1.946 2.640

0 20.700 20.054 0.504
1 22.422 21.966 21.540
a-

ll

s
n-

sion because we shall find thesamesmall radius amplitude
Ad,D as in Sec. II C.

Keeping u and «542D as independent variables, th
SRE can be written in the form

exp~2DHK!}12F~mR,u;«,d!m22dZtvK1•••

~B1!

with

vK5H E
Rd

ddr iF
2~r'50,r i!, d,D

F2~0!, d5D.

~B2!

Herem22dZtvK is a renormalized and dimensionless ope
tor and

F~mR,u;«,d!52A K
(0)~mR!d22@11uF1~mR;«,d!

1O~u2!# ~B3!

has an expansion in terms ofu with the coefficient2A K
(0)

52pd/2/G(a)5aVd of the leading term corresponding t
the Gaussian model@see Eq.~4.6! in I#. The functionsFi can
be expanded in terms of« with coefficients which depend on
mR only via powers of ln(mR). In particular, we shall find
from the critical two-point function that

F1~mR;«,d!5
N12

3 F ln~mR!1 f 11ed1
4p2

a
BdG1O~«!,

~B4!

where

ed511
ln p

2
2

C~d/2!

2
; ~B5!

the quantityBd has been introduced in Eq.~A8!. The ellipses
in Eq. ~B1! stand for contributions in which higher powers
R are multiplied by powers of lnR. Standard renormalization
group arguments imply that for largemR the functionF is
proportional toRd21/n and that the rhs of Eq.~B1! can be
written as 11A KRd21/nvK , where

2AK5m221/nZtDL~u!F~1,u* ;«,d! ~B6!

with DL from Eq. ~2.28!. The universal polymer amplitude
Ad,D in Eq. ~1.11! is related toAK5AK(N) via @64#

Ad,D52AK~0!2m22Zt
21LR x

21/n . ~B7!

By using Eq.~2.28! one finds that the nonuniversal quantiti
m,Zt ,DL , f 1 cancel and

Ad,D5
2pd/2

G~a! H 11
«

4 F4p2

a
Bd1

3

2
2

ln 2

2
2

C~d/2!

2 G
1O~«2!J , ~B8!

which indeed reproduces the first-order« results ofAd,D in
Eq. ~2.52!.
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We now verify Eqs.~B1!–~B5!. Consider the two-point
correlation function^F j (r )Fk(r 8)& of the field theory de-
scribed by Eq.~2.6! at its critical point. Foru50 the SRE
follows from the explicit expressions in Eq.~2.7! for the
Gaussian propagator which by using Wick’s theorem lead

^vKF j~r !Fk~r 8!&b,[0]

5
d jk

2pd
~r'r'8 !2aE

Rd

ddP

~2p!d
exp@ iP~r i2r i8!#

3~P/2!2aKa~Pr'!Ka~Pr'8 !

5~A K
(0)!21 lim

R→0
R22a$^F j~r !Fk~r 8!& [0]

2^F j~r !Fk~r 8!&b,[0]%. ~B9!

Here ^ & is a cumulant average with the subscript@0# indi-
catingu50 and withb denoting the unbounded bulk spa
in the absence ofK. Obviously Eq.~B9! verifies the SRE for
the Gaussian model.

Consider now the first order inu contribution:

^F j~r !Fk~r 8!& [1]52d jk

N12

3
8p2f m«uR2aJ~r ,r 8!,

~B10!

where

J~r ,r 8!5E
y'.R

dDy G~r ,y;R!G~r 8,y;R!I ~y' ,R!,

~B11!

I ~y' ,R!5R22aG~y,y;R!

5
R22a

N $^F2~y!& [0]2^F2~y!&b,[0]%. ~B12!

The first order expression given in Eq.~B10! has the same
structure as the one in Eq.~2.11! and we have used Eq
~2.16a!. Note that in the present dimensional regularizat
scheme and at t050 the bulk quantity Gb(y,y)
5^F2(y)&b,[0] /N vanishes. We have exploited this in ord
to write the last expression in Eq.~B12! in such a form
which allows us to make contact with Eq.~B9! and which
implies

I ~y' ,0!5
A K

(0)

N ^vKF2~y!&b,[0]

52y'
2d1«

a

4p2
$11«ed1O~«2!%. ~B13!

The functionI (y' ,R) is related togs(c,«) in Eq. ~A9! by

y'
d2«I ~y' ,R!5gs~y' /R,«!, ~B14!

and Eq. ~B13! is consistent withgs(`,0)52a/(4p2) as
mentioned below Eq.~A9!. In order to verify Eqs.~B1!–~B5!
we decomposeJ(r ,r 8) according to

J5J(i)1J(ii) 1J(iii) ~B15!
o

n

with

J(i)~r ,r 8!5E
RD

dDy Gb~r ,y!Gb~r 8,y!I ~y' ,R50!,

~B16a!

J(ii) ~r ,r 8!52E
0,y',R

dDy Gb~r ,y!Gb~r 8,y!I ~y' ,R50!,

~B16b!

J(iii) ~r ,r 8!5E
y'.R

dDy $G~r ,y;R!G~r 8,y;R!I ~y' ,R!

2Gb~r ,y!Gb~r 8,y!I ~y' ,R50!%. ~B16c!

In the following we analyze the behavior of the rhs of E
~B10! for R→0 which arises from each of these contrib
tions J(i) , J(ii) , andJ(iii) .

Rewriting I (y' ,0) in the integrand on the rhs of Eq
~B16a! by means of the first equality in Eq.~B13! one finds
~see Fig. 5!

^F j~r !Fk~r 8!& [1],(i)→A K
(0)R2a^vKF j~r !Fk~r 8!&b,[1] .

~B17!

In order to evaluate the leading contribution ofJ( i i ) for
small R, one can sety'50 in the two bulk propagators
Gb(r ,y) and Gb(r 8,y) in the integrand on the rhs of Eq
~B16b!. Its remaining dependence ony' as given by the last
expression in Eq.~B13! leads to a pole in«. This results in
~see Fig. 5!

^F j~r !Fk~r 8!& [1],(ii)

→A K
(0)R2a^vKF j~r !Fk~r 8!&b,[0]

3H ~Zt! [1]1
N12

3
u@ ln~mR!1 f 11ed#J , ~B18!

where (Zt) [1]5(N12)u/(3«) is the contribution toZt of
first order inu @see Eq.~2.16b!#.

For the leading contribution ofJ(iii) for R→0, it is suffi-
cient to confine the integration overy' on the rhs of Eq.
~B16c! to the restricted regionR,y',ARr'

(,) with r'
(,)

5min(r' ,r'8 ). The reason is that in the remaining integrati

FIG. 5. Representation of̂vKF1(r )F1(r 8)&b,[l] appearing on
the right-hand side of Eqs.~B17!, ~B18!, and~B22!. The solid lines
correspond to the bulk Gaussian propagatorGb,[0][Gb and l
50,1 denotes the loop order. The wiggly lines indicate the inser
of the operatorvK located at the ‘‘axis’’ of the generalized cylinde
K.
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region not only the ratiosR/r' andR/r'8 but alsoR/y' are
small so that in leading order one can insertR50 into the
first term in curly brackets, which is then canceled by t
second term. In particular, in the restricted regiony' is
smaller thanr' andr'8 . By inserting the representation~2.7!
for the external legsG andGb in Eq. ~B16c!, one finds that
only the terms forn50 contribute to the leading behavior o
J(iii) for which one obtains
l
R

ith

e
ri

en
ra
fu
i

e

J(iii) ~r ,r 8!→
Vd

2
R«^vKF1~r !F1~r 8!&b,[0]bd , ~B19!

bd5E
1

`

dc c211«$@12c22a#2gs~c,«!2gs~`,«!%

~B20!
with gs from Eq. ~B14!. The quantitybd arises as the limit
for R→0 of the expression@65#
q.
E
1

Ar'
(,)/R

dc c211«@G~a11!#2S RPc

2 D 22aH F I a~RPc!2
I a~RP!

Ka~RP!
Ka~RPc!G2

gs~c,«!2@ I a~RPc!#2gs~`,«!J .

~B21!

Of course,bd→Bd for «→0 and the present procedure forR/r'
(,)→0 at the critical point of the field theory leading to E

~B20! should be compared with the procedure forR/j1→0 leading toBd in Eq. ~A8!. Equation~B19! implies ~see Fig. 5!

^F j~r !Fk~r 8!& [1],( iii)→A K
(0)R2a^vKF j~r !Fk~r 8!&b,[0]

N12

3
u

4p2

a
Bd1O~u«!. ~B22!
bulk

f

but
ge-
Equations~B17!, ~B18!, and ~B22! corroborate the SRE in
Eqs.~B1!—~B5! to first order inu in the case of the critica
correlation function. Note the recurrent character of the S
which is typical for operator product expansions@37~b!#. A
graphical representation of the bulk correlation function w
insertion of the operatorvK is shown in Fig. 5.

Apart from particles in a polymer solution, there are oth
physical systems the SRE can be applied to such as sphe
or cylindrical particles in liquid4He near thel point and
nonmagnetic inclusions in a ferromagnet of Ising or Heis
berg type near the Curie point. For these systems the pa
eterN takes the values 2, 1, and 3, respectively. A use
characterization of the small sphere or the thin cylinder
these cases is provided by the universal amplitude

Âd,D~N!52AK~N!ABF2~N!

N ~B23!

with the amplitudeBF2 of the bulk correlation function
^F2(r )F2(0)&b5BF2r 22(D21/n) at the critical point. For ex-
ample, the change in free energy per unit ‘‘length’’l d which
arises upon immersing the generalized cylinderK into the
bulk system displays a singular dependence ont;(T
2Tc)/Tc given by

F2
kBT

l d
ln ^e2DHK&b,tG

sing

52kBTcR
d21/nAK~N!@^F2&b,t#sing

5kBTcR
d21/nj2(D21/n)Âd,D~N!Ê~N! ~B24!

with the universal bulk amplitude

Ê~N!5@^F2&b,t#singj
D21/n~BF2 /N!21/2, ~B25!
E

r
cal

-
m-
l

n

which characterizes the temperature dependence of the
energy density. From Eqs.~B1!–~B6! and from the depen-
dence ofBF2(N) on « one obtains the following explicit
expressions:

ÂD,D~N!5
1

A2
1O~«2!, ~B26a!

Â3,D~N!5
1

A2p
H 11

«

2 FCE1 ln p1
N12

N18

3~16p2B312ln 221!G J 1O~«2!,

~B26b!

and

Â2,D~N!5«
N12

N18
23/2pB21O~«2!. ~B26c!

The first-order« result ~B26a!, which we have obtained
by carrying out the calculationdirectly in the outer space o
a sphere, confirms the prediction@34#

ÂD,D~N!5A~AO
F2

!2/~NBF2!, ~B27!

which follows from relating the half-space~hs! profile

^F2(z)&hs5AO
F2

(2z)2(D21/n) with the distancez from a pla-
nar wall with Dirichlet boundary conditionsO at the bulk
critical point to the profilê F2(r )& in the outer space of the
sphere by means of a conformal transformation@60# @for N
51 compare the explicit result in the first Eq.~20! of Ref.
@34~a!#. The consistency of the above results is expected
remarkable since the finite conformal map changes the
ometry under consideration.
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It is helpful to summarize the relationship between t
universal amplitudeAd,D for polymers and the universal am
plitude Âd,D for the field theory in terms of the symboli
equation

Ad,DC5Âd,DAN/BF2F2, ~B28!

which applies inside averages or correlation functions
N↘0 with C defined in Eq. ~C7!. Since C
5AbC /BF2F2, with bC5@R x

1/n/(2L0)#2BF2 from Eq.
~C10!, one has

Ad,D5~Âd,DAN/bC!N↘0 . ~B29!

For a spherical particle, in particular, the polymer amplitu
AD,D can be expressed in terms of the critical universal a
plitude ratio on the rhs of Eq.~B27! and the noncritical uni-
versal bulk amplitudebC . In D52 both are explicitly
known @19~b!# and lead to the valueA2,253.81 in Table I.

APPENDIX C: SHORT DISTANCE AMPLITUDE
FOR POLYMER DENSITY CORRELATIONS

Here we calculate the universal amplitudes in Eqs.~3.5!
and ~3.6!. While for D54 it coincides with the correspond
ing ideal chain values (id)5p22 from Eq.~3.7!, in D53, 2,
and 1 the amplitudes is different froms (id).

~a! D53. In this case results are available@18,49# for the
normalized scattering form factorH(Q) which is defined for
generalD by

C2~r ,0!5R x
2/nE

RD

dDQ

~2p!D
exp~ iQ•r !H~Q!, ~C1!

whereH(0)51 as implied by Eq.~3.3!. The amplitudeh` in
the power law

H~Q→`!→h`~Q2R x
2/2!21/(2n) ~C2!

is related tos by

s5h`221/(2n)p2D/2GS D21/n

2 D Y GS 1

2n D . ~C3!

From the accepted@18,49# approximate valueh`'1.1 in D
53, one infers via Eq.~C3! the values'0.13~see Table I!.

~b! D52. In this case one can obtain a fairly accura
estimate fors by combining a numerical estimate for a rat
of gyration radii of ring- and open-chain polymers with co
formal invariance and Bethe ansatz results for theO(N) vec-
tor model by invoking the polymer magnet analogy~PMA!
@15,17#. By using the language of the Ginzburg-Landau fie
theory ~compare Sec. II A! the necessary relations of th
PMA can be written in a way which makes the generali
tion to D52 obvious. The polymer average

$r~rA!r~rB!r~rC!%y

5

LK C~rA!C~rB!C~rC!F1~y!E dDy8F1~y8!L
LK F1~y!E dDy8F1~y8!L ~C4!
r

e
-

-

is expressed in terms of cumulant averages^ & of the field
theory. HereL5L(t0→L0) denotes an inverse Laplac
transform defined as in Eq.~2.5! and relates the strengtht0 in
the thermal perturbation

Hth5E
RD

dDr T ~r !, ~C5!

T ~r !5
t0

2
F2~r !, ~C6!

of the Hamiltonianat the critical point of the field theory to
the bare ‘‘chain length’’L0 which—apart from a nonuniver
sal proportionality factor—equals the number of monom
in the polymer chain. The scaling dimension of the quan

C~r !5R x
1/n 1

E
T ~r ! ~C7!

equals its inverse length dimensionD21/n. HereE5t0L0 is
the exponent which appears inL @compare Eq.~2.5!#. The
rhs of Eq.~C4! has the normalization property that by int
grating the numerator over, say,rA one can replace
*dDr AC(rA) byR x

1/n @compare the discussion related to E
~18! in Ref. @57##. This is consistent with the correspondin
normalization property*dDr Ar(rA)5R x

1/n for the lhs of Eq.
~C4! as implied by Eq.~1.13!.

Short distance properties such as those in Eqs.~3.5! and
~3.6! follow from the operator product expansion~OPE!

C~rA!C~rB!→sr AB
2(D21/n)C@~rA1rB!/2#, ~C8!

which is equivalent to the well-known OPE of energy de
sity operators@37~b!,59#. The amplitudes is expressed as

s5zAbC. ~C9!

HerebC is the universal bulk amplitude in

^C~r !C~0!&crit5bCr 22(D21/n) ~C10!

with ^ &crit denoting the average at the critical point of th
field theory andz is the amplitude which replacess in the
corresponding OPE for the normalized energy densityC̃
5C/AbC. By using results of Refs.@66,67# one finds that in
D52 for N↘0,

N 1/2z→~216p!1/2S G~2/3!

G~1/3! D
9/2

'1.21 ~C11!

@compare Eq.~7.161! in Ref. @19~a!#, wherez is denoted by
c2#. The amplitudebC has been calculated in the Append
of Ref. @19~b!# by using results of Ref.@68# so that inD
52 for N↘0 one has
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N21/2AbC→
k

p S 5

6
R x

2Y Rring
2 D 2/3

, ~C12!

wherek50.226 630 andR x
2/Rring

2 '6.85 @69# is the ratio of
R x

2 of an open polymer chain and the mean square radiu
gyrationRring

2 5Rx,ring
2 1Ry,ring

2 of a ring polymer with the
id

oid
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same number of monomers. Equations~C9!–~C12! lead to
the values'0.278 in Table I.

~c! D51. In this case the behavior of a chain with e
cluded volume interaction is that of a rigid rod of lengthRx .
Thusn51 andC2(r ,0) equalsRx2ur u for ur u<Rx while it
vanishes forur u.Rx . The assumption that Eq.~3.5! still
holds forD51 leads to the values51 in Table I.
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