49 research outputs found

    All-cause mortality and long-term exposure to low level air pollution in the ‘45 and up study’ cohort, Sydney, Australia, 2006–2015

    Get PDF
    Epidemiological studies show that long-term exposure to ambient air pollution reduces life expectancy. Most studies have been in environments with relatively high concentrations such as North America, Europe and Asia. Associations at the lower end of the concentration-response function are not well defined.We assessed associations between all-cause mortality and exposure to annual average particulate matte

    Development of a cloud-based platform for reproducible science: a case study of an IUCN red list of ecosystems assessment

    Get PDF
    One of the challenges of computational-centric research is to make the research undertaken reproducible in a form that others can repeat and re-use with minimal effort. In addition to the data and tools necessary to re-run analyses, execution environments play crucial roles because of the dependencies of the operating system and software version used. However, some of the challenges of reproducible science can be addressed using appropriate computational tools and cloud computing to provide an execution environment. Here, we demonstrate the use of a Kepler scientific workflow for reproducible science that is sharable, reusable, and re-executable. These workflows reduce barriers to sharing and will save researchers time when undertaking similar research in the future. To provide infrastructure that enables reproducible science, we have developed cloud-based Collaborative Environment for Ecosystem Science Research and Analysis (CoESRA) infrastructure to build, execute and share sophisticated computation-centric research. The CoESRA provides users with a storage and computational platform that is accessible from a web-browser in the form of a virtual desktop. Any registered user can access the virtual desktop to build, execute and share the Kepler workflows. This approach will enable computational scientists to share complete workflows in a pre-configured environment so that others can reproduce the computational research with minimal effort. As a case study, we developed and shared a complete IUCN Red List of Ecosystems Assessment workflow that reproduces the assessments undertaken by Burns et al. (2015) on Mountain Ash forests in the Central Highlands of Victoria, Australia. This workflow provides an opportunity for other researchers and stakeholders to run this assessment with minimal supervision. The workflow also enables researchers to re-evaluate the assessment when additional data becomes available. The assessment can be run in a CoESRA virtual desktop by opening a workflow in a Kepler user interface and pressing a “start” button. The workflow is pre-configured with all the open access datasets and writes results to a pre-configured folder

    Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing severe vegetation fires worldwide has been attributed to both global environmental change and land management practices. However there is little evidence concerning the population health effects of outdoor air pollution derived from biomass fires. Frequent seasonal bushfires near Darwin, Australia provide an opportunity to examine this issue. We examined the relationship between atmospheric particle loadings <10 microns in diameter (PM<sub>10</sub>), and emergency hospital admissions for cardio-respiratory conditions over the three fire seasons of 2000, 2004 and 2005. In addition we examined the differential impacts on Indigenous Australians, a high risk population subgroup.</p> <p>Methods</p> <p>We conducted a case-crossover analysis of emergency hospital admissions with principal ICD10 diagnosis codes J00–J99 and I00–I99. Conditional logistic regression models were used to calculate odds ratios for admission with 10 μg/m<sup>3 </sup>rises in PM<sub>10</sub>. These were adjusted for weekly influenza rates, same day mean temperature and humidity, the mean temperature and humidity of the previous three days, days with rainfall > 5 mm, public holidays and holiday periods.</p> <p>Results</p> <p>PM<sub>10 </sub>ranged from 6.4 – 70.0 μg/m<sup>3 </sup>(mean 19.1). 2466 admissions were examined of which 23% were for Indigenous people. There was a positive relationship between PM<sub>10 </sub>and admissions for all respiratory conditions (OR 1.08 95%CI 0.98–1.18) with a larger magnitude in the Indigenous subpopulation (OR1.17 95% CI 0.98–1.40). While there was no relationship between PM<sub>10 </sub>and cardiovascular admissions overall, there was a positive association with ischaemic heart disease in Indigenous people, greatest at a lag of 3 days (OR 1.71 95%CI 1.14–2.55).</p> <p>Conclusion</p> <p>PM10 derived from vegetation fires was predominantly associated with respiratory rather than cardiovascular admissions. This outcome is consistent with the few available studies of ambient biomass smoke pollution. Indigenous people appear to be at higher risk of cardio-respiratory hospital admissions associated with exposure to PM10.</p

    Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996–2005: a time-series study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Air pollution in Darwin, Northern Australia, is dominated by smoke from seasonal fires in the surrounding savanna that burn during the dry season from April to November. Our aim was to study the association between particulate matter less than or equal to 10 microns diameter (PM<sub>10</sub>) and daily emergency hospital admissions for cardio-respiratory diseases for each fire season from 1996 to 2005. We also investigated whether the relationship differed in indigenous Australians; a disadvantaged population sub-group.</p> <p>Methods</p> <p>Daily PM<sub>10 </sub>exposure levels were estimated for the population of the city from visibility data using a previously validated model. We used over-dispersed Poisson generalized linear models with parametric smoothing functions for time and meteorology to examine the association between admissions and PM<sub>10 </sub>up to three days prior. An interaction between indigenous status and PM<sub>10 </sub>was included to examine differences in the impact on indigenous people.</p> <p>Results</p> <p>We found both positive and negative associations and our estimates had wide confidence intervals. There were generally positive associations between respiratory disease and PM<sub>10 </sub>but not with cardiovascular disease. An increase of 10 μg/m<sup>3 </sup>in same-day estimated ambient PM<sub>10 </sub>was associated with a 4.81% (95%CI: -1.04%, 11.01%) increase in total respiratory admissions. When the interaction between indigenous status and PM<sub>10 </sub>was assessed a statistically different association was found between PM<sub>10 </sub>and admissions three days later for respiratory infections of indigenous people (15.02%; 95%CI: 3.73%, 27.54%) than for non-indigenous people (0.67%; 95%CI: -7.55%, 9.61%). There were generally negative estimates for cardiovascular conditions. For non-indigenous admissions the estimated association with total cardiovascular admissions for same day ambient PM<sub>10 </sub>and admissions was -3.43% (95%CI: -9.00%, 2.49%) and the estimate for indigenous admissions was -3.78% (95%CI: -13.4%, 6.91%), although ambient PM<sub>10 </sub>did have positive (non-significant) associations with cardiovascular admissions of indigenous people two and three days later.</p> <p>Conclusion</p> <p>We observed positive associations between vegetation fire smoke and daily hospital admissions for respiratory diseases that were stronger in indigenous people. While this study was limited by the use of estimated rather than measured exposure data, the results are consistent with the currently small evidence base concerning this source of air pollution.</p

    Climate Change, Drought and Rural Suicide in New South Wales, Australia: Future Impact Scenario Projections to 2099

    No full text
    Mental health problems are associated with droughts, and suicide is one of the most tragic outcomes. We estimated the numbers of suicides attributable to drought under possible climate change scenarios for the future years until 2099, based on the historical baseline period 1970&ndash;2007. Drought and rural suicide data from the Australian state of New South Wales (NSW) were analyzed for the baseline data period. Three global climate models and two representative concentration pathways were used to assess the range of potential future outcomes. Drought-related suicides increased among rural men aged 10&ndash;29 and 30&ndash;49 yrs in all modelled climate change scenarios. Rural males aged over 50 yrs and young rural females (10&ndash;29) showed no increased suicide risk, whereas decreased suicide rates were predicted for rural women of 30&ndash;49 and 50-plus years of age, suggesting resilience (according to the baseline historical relationship in those population sub-groups). No association between suicide and drought was identified in urban populations in the baseline data. Australian droughts are expected to increase in duration and intensity as climate change progresses. Hence, estimates of impacts, such as increased rural suicide rates, can inform mitigation and adaptation strategies that will help prepare communities for the effects of climate change

    Anthropogenic climate change and health in the Global South

    No full text
    This paper explores evidence relevant to the hypothesis that human-generated climate change (global warming) is already, and will increasingly, add to the existing burden of disadvantage experienced by populations in low-income countries, the ‘Global South’. Well recognised health manifestations of global warming include from heatwaves and other extreme weather events, changes to infectious disease patterns, and undernutrition, arising from higher food prices, reduced food availability and reduced nutrient concentrations of many foods. These effects have been called ‘primary’ and ‘secondary’. Although these manifestations will have effects globally, their biggest impact on health is and will be upon poor and vulnerable populations in low-income settings. Also well recognised, manual labourers are increasingly vulnerable from excessive heat and humidity. There is less recognition that climate change interacts with social and political determinants of health, contributing to ‘tertiary’ health consequences including conflict, forced migration and famine. In turn, these effects may deepen poverty traps in the Global South. Human-generated climate change is principally caused by the policies and lifestyles of populations in high-income countries (the Global North). The recent recognition by the British government that climate change is an emergency is encouraging, and may help motivate the widespread global behavioural changes that are needed to reduce the many risks from global warming, including to the people of the South

    Drought and Distress in Southeastern Australia

    No full text

    Impact of scale of aggregation on associations of cardiovascular hospitalization and socio-economic disadvantage

    No full text
    There are numerous studies that show an increased incidence of cardiovascular disease with increasing levels of socio-economic disadvantage. Exposures that might influence the relationship include elements of the built environment and social systems that shape lifestyle risk behaviors. In Canberra (the Australian capital city) there has been a particular housing policy to create 'mixed-tenure' neighborhoods so that small pockets of disadvantage are surrounded by more affluent residences (known as a 'salt-and-pepper' pattern). This may contribute to a scatter of higher incidence rates in very small areas in this population that may be obscured if aggregated data are used. This study explored the effect of changing the scale of the spatial units used in small area disease modelling, aiming to understand the impact of this issue and the implications for local public health surveillance.The residence location of hospitalized individuals were aggregated to two differently scaled area units. First, the Australian Bureau of Statistics Statistical Area 2 (SA2) which is normally used as the basis for deidentification and release of health data. Second, these data were aggregated to a smaller level: the Statistical Area 1 (SA1). Generalized Additive Models with penalized regression splines were used to assess the association of age-sex-standardized rates for cardiovascular disease hospital admissions with disadvantage.The relationships observed were different between the two types of spatial units. The SA1 level exposure-response curve for rates against the disadvantage index extended in a linear fashion above the midrange level, while that found at SA2-level suggested a curvilinear form with no evidence that rates increased with higher disadvantage beyond the midrange.Our result supports findings of other work that has found disadvantage increases risk of cardiovascular disease. The shape of the curves suggest a difference in associations of cardiovascular disease rates with disadvantage scores between SA1 versus SA2. From these results it can be concluded that scale of analysis does influence the understanding of geographical patterns of socio-economic disadvantage and cardiovascular disease morbidity. Health surveillance and interventions in Canberra should take into account the impact of the scale of aggregation on the association between disadvantage and cardiovascular disease observed
    corecore