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A B S T R A C T

Background: Epidemiological studies show that long-term exposure to ambient air pollution reduces life ex-
pectancy. Most studies have been in environments with relatively high concentrations such as North America,
Europe and Asia. Associations at the lower end of the concentration-response function are not well defined.
Objectives: We assessed associations between all-cause mortality and exposure to annual average particulate
matter < 2.5 μm (PM2.5) and nitrogen dioxide (NO2) in Sydney, Australia, where concentrations are relatively
low.
Methods: The ‘45 and Up Study’ comprises a prospective longitudinal cohort from the state of New South Wales,
Australia with 266,969 participants linked to death registry data. We analyzed data for the participants who
resided in Sydney at baseline questionnaire (n = 75,268). Exposures to long-term pollution were estimated using
annual averages from a chemical transport model (PM2.5), and a satellite-based land-use regression model (NO2).
Socio-demographic information was extracted from the baseline questionnaire. Cox proportional hazard models
were applied to estimate associations, while adjusting for covariates.
Results: In our cohort mean annual PM2.5 was 4.5 μg/m3 and mean NO2 was 17.8 μg/m3. The mortality rate was
4.4% over the 7 years of follow up. Models that adjusted for individual-level and area-level risk factors resulted
in a detrimental non statistically significant hazard ratio (HR) of 1.05 (95% CI: 0.98–1.12) per 1 μg/m3 increase
in PM2.5, and 1.03 (95% CI: 0.98–1.07) per 5 μg/m3 increase in NO2.
Conclusions: We found evidence that low-level air pollution exposure was associated with increased risk of
mortality in this cohort of adults aged 45 years and over, even at the relatively low concentrations seen in
Sydney. However, a clear determination of the association with mortality is difficult because the results were
sensitive to some covariates. Our findings are supportive of emerging evidence that exposure to low levels of air
pollution reduces life expectancy.
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1. Introduction

Associations between long-term exposure to ambient air pollution
and premature mortality have been consistently shown since the early
work of the Harvard Six Cities Study (Dockery et al., 1993) and the
American Cancer Society Study (Pope III et al., 1995). A meta-analysis
of the European Study of Cohorts for Air Pollution Effects (ESCAPE)
(Beelen et al., 2014) showed strong associations with increased all-
cause mortality and air pollutants especially particulate matter < 2.5
μm (PM2.5) (also see Chen et al., 2008) and nitrogen dioxide (NO2)
(also see Hoek et al., 2013). While pooled analyses have been used to
quantify the exposure-response function across the concentration
spectrum (Burnett et al., 2018; Burnett et al., 2014), evidence is lacking
at the lower end of this function because most existing cohorts have
been from locations where pollutant levels are relatively high. Recently
more cohort studies with relatively low PM2.5 exposures have been
published, for example one such study showed that there was a steeper
slope on the regression line found in a ‘low exposure’ subgroup of the
61 million American Medicare population cohort (with exposures under
12 μg/m3) than that observed in a model of the whole cohort (Di et al.,
2017). Another study from Canada (mean = 6.3 μg/m3) observed an
increased risk of all non-accidental mortality and did not find evidence
for any threshold of a ‘safe’ lower level of pollution (Pinault et al.,
2016). Integrated exposure-response functions (IER) have been devel-
oped to enable quantification of the health effect of outdoor air pollu-
tion over the full range of exposures and currently have an assumed
theoretical minimum risk level (Burnett et al., 2014). Studies from low
exposure environments are needed to support the refinement of the IER
at the low end.

The multicenter ESCAPE group describe 22 cohorts in Europe where
observed PM2.5 levels across cohorts ranged from 7.7 to 31.0 μg/m3 (12
cohorts were > 10 μg/m3), while NO2 ranged from 5.2 to 59.8 μg/m3

with the majority (13 cohorts) having levels > 20 μg/m3 (Beelen et al.,
2014). In comparison the regulatory (background) monitoring sites in
Sydney had lower annual averages of 5.5 μg/m3 for PM2.5 and 14.3 μg/
m3 for NO2 observed in 2011 (NSW Office of Environment and
Heritage, n.d.). Annual average NO2 concentrations in 15 cohort studies
(from North America, Europe, China and Japan) included in a 2013
review (Hoek et al., 2013) ranged from 17.0 to 67.0 μg/m3, with a
mean 35.8 μg/m3. The cohort in Rome, a city with a similar population
size to Sydney, had an annual average NO2 of 44.0 μg/m3, three times
higher than the average for NO2 concentration measured in Sydney in
2011.

The IER functions are used to estimate the global burden of disease
(GBD) attributable to air pollution. The GBD study estimated that in
2015 exposure to ambient PM2.5 air pollution was the sixth‑leading risk
factor for burden of disease globally (Forouzanfar et al., 2016). The IER
functions developed by Burnett et al. (2014) were extended and used by
Apte et al. (2015) and Cohen et al. (2017) to assess how regional and
global improvements in ambient air quality could reduce attributable
mortality. The IERs used by Apte et al. (2015) have a low exposure
“threshold” for PM2.5 distributed between 5.8 and 8.0 μg/m3. This
lower bound for the theoretical minimum risk level is higher (and thus
more conservative) than those used in recent GBD work (Forouzanfar
et al., 2016) that updated information for the GBD 2015 estimates and
defined a PM2.5 threshold distribution between 2.4 and 5.9 μg/m3.
Conservative decisions regarding the level of theoretical minimum risk
are usually taken because of a lack of empirical studies to support es-
timates of risk at low concentrations. However, the absence of such
evidence does not imply evidence of the absence of risk at low con-
centrations, and so further research is required in low concentration
environments such as Sydney.

In this study, we aimed to contribute to the evidence base on long-
term exposure to low air pollution concentrations. We analyzed a large
cohort of adults sampled from the general population aged 45 years and
over from the Australian ‘45 and Up Study’ cohort, the largest general

population cohort in the southern hemisphere (Mealing et al., 2010).
Improved understanding of the health risks at lower levels of air pol-
lution exposure will inform current and future air pollution standards,
as well as monitoring, policy and management programs to protect
population health.

2. Methods

2.1. Study population

We drew our study population from the ‘45 and Up Study’, a pro-
spective longitudinal cohort from the state of New South Wales (NSW),
Australia, within which Sydney is located. Each participant's baseline
address was geocoded to longitude and latitude to enable linkage with
neighborhood socio-demographic factors and environmental exposures.

Participants aged 45 years or older were randomly sampled from the
Department of Human Service enrolment database, which is Australia's
universal health care system and provides near complete coverage of
the population. All NSW residents over 45 years at time of recruitment
were eligible to be sampled. The overall response rate to the baseline
questionnaire was estimated to be approximately 18% (Banks et al.,
2008). The response rate is variable across the different age/gender
groups sampled because people aged 80 years and older were over-
sampled by a factor of two, and males aged 80 years or over were
oversampled compared to females (Mealing et al., 2010). Participants
completed the baseline questionnaire (between 2006 and 2009) and
gave consent for follow-up via linkage of their personal information to
the death registry. We included participants if their address was inside
the Sydney metropolitan area as this is the extent of our air pollution
model domain and we could ensure comparability of air pollution ex-
posures within the population subset being studied. We also restricted
the age of participants included in our study population to those who
were younger than 80 years of age at recruitment for two reasons, i) the
oversampling of participants aged 80 years or older resulting in a bi-
modal age distribution and may lead to selection bias due to the
“healthy volunteer effect” (Lindsted et al., 1996) as a greater proportion
of participants would be aged older than the average life expectancy of
the general population (Beadle et al., 2013) and ii) for comparability
with international studies, which generally use age groups < 80 years
(Beelen et al., 2014). Therefore, the sample population base for our
study was any cohort participants within the Sydney metropolitan
airshed who were aged 45 to 79 at recruitment.

The data collection of the ‘45 and Up Study’ was approved by the
University of New South Wales Human Research Ethics Committee
(HREC). The study presented in this paper was approved by the NSW
Population & Health Services Research Ethics Committee (reference:
HREC/15/CIPHS/4), the Cancer Institute NSW (reference: 2015/02/
575 Air Pollution, Traffic Exposures and Mortality and Morbidity in
Older Australians (APTEMA) Study).

2.2. Mortality data

Mortality data from 2007 to 2015 was extracted from the NSW
Register of Births Deaths and Marriages (RBDM) and linked to ‘45 and
Up Study’ participants. This data included date and age of death and
other individual level information but not cause of death coding. The
Centre for Health Record Linkage (CHeReL) linked the cohort and death
registration data for this study.

2.3. Air pollution exposure

We estimated air pollutant concentrations in the neighborhood of
the coordinates of the baseline addresses of the study participants. For
PM2.5 we used a chemical transport model (CTM) with estimated air
pollutant concentration fields from a meteorological and air emissions
model. A CTM uses numerical simulation algorithms to produce the
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estimated concentrations. An existing PM2.5 CTM modelled surface for
the year between July 2010 to June 2011 was used (Cope et al., 2014).
We assessed the temporal trends in PM2.5 and consider the spatial
pattern in this year to be representative of the annual averages in
previous years. The CTM estimates were computed for a grid of
1 km × 1 km cells over a 100 km × 100 km region covering the Sydney
region. This dataset was then “blended” to incorporate information
from fixed site monitor data and adjusted the modelled estimates to
match the observations (Physick et al., 2007). The cross-validated leave
one out average R2 for a 24 h time-step model run over the year July
2010–June 2011 was 0.70 and the model captures many of the ob-
served daily PM2.5 peaks. An additional model run used in sensitivity
analyses was completed for a larger 300 km × 300 km region with grid
cells at 3 km × 3 km resolution but these were not blended due to lack
of available monitor data.

For NO2, we used estimated concentrations for 2007 from a spatial
regression model using satellite and land use data (Knibbs et al., 2014;
Knibbs et al., 2016). Knibbs et al. (2014) found that year to year dif-
ferences were small for the NO2 model between 2006 and 2011 so we
assumed the 2007 data were representative of long-term exposures. In
an independent validation at 98 measurement sites the R2 was 0.69
using annual ambient NO2 concentrations 2006–2011 (Knibbs et al.,
2016). We used this model to estimate annual average NO2 con-
centration at Australian Bureau of Statistics (ABS) mesh blocks. Mesh
blocks are the smallest geographical area defined by ABS and contains
around 30–60 dwellings. Participants' exposure to annual average NO2

in 2007 was calculated at their mesh block centroid.

2.4. Individual-level demographic and risk factor data

Information on the participants was collected in the baseline ques-
tionnaire and included demographic data on age, education, ethnicity,
marital status; lifestyle and habits including physical activity, smoking
and alcohol consumption; current medications; history of disease; sur-
gical procedures; psychological distress; social support and employment
status, paid and unpaid work and income. Detailed definitions of all the
variable names of the ‘45 and Up Study’ baseline data are available
from the website: https://www.saxinstitute.org.au/our-work/45-up-
study/data-book/. The baseline survey items are well suited to sup-
port our aim to understand the impact of air pollution while adjusting
for relevant social, economic and behavioral factors on the health of
Australians in mid to later life.

2.5. Area level socio-economic status (SES)

Neighborhood-level socio-economic status (SES) data was attached
to participant records, using the ABS's 2006 Socio-Economic Indexes for
Areas Index of Relative Socio-Economic Disadvantage (SEIFA IRSD).
This index was based on 16 different measures such as the proportion of
residents who had low income, low education, were unemployed, were
separated/divorced, single parents and unskilled occupations derived
from 2006 Census variables at a Collector District (CD) spatial area. CDs
are the smallest available area in the Australian Standard Geographic
Classification (ASGC) and the smallest area for which the 2006 SEIFA
indexes are available. The IRSD score has a mean of 1000 and standard
deviation of 100 across the entire country, but we re-expressed these as
quartiles within the Sydney sample. Low scores (quartile 1) below 1000
indicate the most disadvantage relative to all cohort participants, and
higher scores indicate less relative disadvantage (quartile one < 1000,
quartile two = 1000–1072, quartile three = 1073–1119, and quartile
four ≥1120).

2.6. Statistical analyses

We first assessed correlation between variables in exploratory data
analysis using Pearson's r for interval data, Spearman's ρ for ordinal or

ANOVA for nominal variables. We then used survival analysis (Cox
proportional hazards models) to quantify associations between the two
pollutants PM2.5 and NO2 and all-cause mortality in single-pollutant
models, adjusting for other risk factor covariates and potential con-
founders. We used age as the time variable as this is expected to provide
better adjustment for potential time-dependent confounding in the
model (Shariff et al., 2008). The survival models also included a left-
truncation adjustment for age at recruitment (Hanley and Foster, 2014).
Subjects were censored at the day of death, while subjects who had not
died by 31 March 2015 were censored on that day (the last day when
linked death registry information was available).

2.7. Candidate models

Potential effect modifiers and confounders were identified from
published literature, particularly the pooled analysis of ESCAPE cohorts
reported by Beelen et al. (2014). All individual-level covariates were
included as categories, which assisted in modelling non-linear re-
lationships of the covariates with mortality. We adjusted for variables
chosen a priori based on their potential to be confounders or effect
modifiers following the ESCAPE cohorts study protocol (ESCAPE
Statistical Tasks Working Group, 2012) because we wanted to ensure
direct comparison with the other studies (Beelen et al., 2014; Cesaroni
et al., 2014; Raaschou-Nielsen et al., 2013). Model A included age as
the time axis, sex, and calendar time of enrolment (2006–2007 or
2008–2009). Model B added individual level variables excluding vari-
ables that could be on the pathway linking air pollution to health
outcome. The variables in Model B included smoking status (never,
former, current), weekly alcohol consumption (none, 1–7, 8–14, > 14
standard drinks), body-mass index (BMI, as underweight, normal,
overweight, or obese), educational level (low = no school certificate,
school certificate, or intermediate certificate; medium = high school
certificate, trade/apprenticeship or diploma; high = university degree
or higher), working status (employed = working full-time, part-time or
self-employed; not employed = retired, home duties, unemployed,
student, unpaid work), and whether they were born in Australia (yes/
no).

Model C added marital status and physical activity to Model B.
Marital status was considered a distal causal influence on the more
proximal health risk factors such as smoking, alcohol and BMI and
therefore potentially an important risk factor. This variable was with-
held from Model B because of concerns about overadjustment. We ob-
served a correlation between marital status and exposure in our study
participants from exploratory data analysis (shown in Supplemental
Material Table S1) so we included this in Model C to compare our re-
sults without this correlated variable. Marital status was classified as
individuals who were single/divorced/widowed/separated compared
with those who were married/de facto. We withheld physical activity
from Model B because this is potentially a confounder or mediator as
people who live in polluted areas may not exercise as much, especially
if they suffer from air pollution related diseases that reduce their
physical abilities, and physical inactivity is associated with mortality.
We therefore also included sufficient physical activity in Model C
(considered sufficient if activity occurs 5 or more times per week and
total duration≥ 150 min).

Model D (considered to be our main model) extended Model C with
the addition of area-level SES and a random intercept for the different
statistical local areas (SLA) from the 2006 census. The random intercept
is to accommodate any residual spatial clustering. Only participants
with complete data for all models A–D were used in the primary ana-
lyses.

Model diagnostics were checked for Model B and modifications
were made to subsequent models accordingly. For example, stratifica-
tion by covariates was used to resolve issues of their non-proportional
hazards and the influence of any high leverage points (e.g. with ex-
tremely high exposure estimates) was assessed by re-fitting models with
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exposures truncated to the limits of data density. Tests for statistical
significance were set at P ≤ 0.05. The R environment for statistics and
graphics version 3.4.1 was used for all analyses (R Core Team, 2017).

2.8. Main model and sensitivity analyses

We considered Model D as our main model based on the inclusion of
individual and area-level risk factors known from prior knowledge, and
because of consistency with the ESCAPE study protocol used by many
other cohort studies. In sensitivity analyses, we compared our result for
Model D when missing predictor data were imputed using a recursive
partitioning model. We then explored the possibility of a difference in
mortality by gender (because of possible effect modification due to
biological or behavioral risk factors). We also assessed the potential for
non-linear exposure-response curves. Possible non-linearity in the ex-
posure-response function was assessed using splines added with three,
four and five degrees of freedom and by assessing the difference in the
Bayesian Information Criterion (BIC). We chose to use BIC because it is
considered more appropriate than the Akaike Information Criterion
(AIC) when the aim of modelling is explanation (Shmueli, 2010). AIC is
the preferred test when modelling aims to build a predictive model but
can lead to overfitting and was not used for this reason. We used a
threshold of six-point difference between BIC to define a strong evi-
dence for an improvement (Raftery, 1995). We also fit additional
models to an expanded study region for which we had exposures (albeit
with lower confidence in the accuracy of the estimates) based on CTM
model domain at 3 km × 3 km gridded resolution. The difference in BIC
was used to assess the support for model re-parametrisations such as the
addition of interaction terms or non-linear splines (Shmueli, 2010).
Finally, we assessed the inclusion of ozone in the NO2 model as this is a
potential confounder because NO2 is a precursor to ozone formation.
Further information is presented in the Supplemental Material.

3. Results

Of the 85,846 cohort participants who met our study inclusion
criteria for location within the Sydney metropolitan airshed and age
between 45 and 79 years old at recruitment we had complete covariate
data across all models for 75,268 participants for the main PM2.5 sur-
vival models (i.e. about 12% missing covariate data for Model D). From
this study population 3282 participants had died during the 7-year
(average) period of follow up (4.4%). After excluding those with
missing NO2 estimates from this dataset there were 75,145 people with
3280 deaths.

Fig. 1 shows a map of the study area with air pollution exposure
estimates. Panel A includes PM2.5 annual averages (for our inner study
region with 1 km × 1 km pixels) and panel B includes NO2 annual
averages for the same region. The concentrations are generally highest
in the central parts of the city, around major roads, and near industrial
facilities.

Table 1 summarizes the study subject characteristics at baseline and
Table 2 shows the distribution of the cohort pollutant exposures.

PM2.5 and NO2 were highly correlated (0.73, P < 0.001) and
therefore were not included in the same model. Correlations with air
pollutants and all covariates are shown in the Supplemental Material.
Pearson correlations for interval data are shown in Fig. S1, Spearman
correlations for ordinal data are in Fig. S2 and ANOVA eta for nominal
data are in Table S1. Both pollutants were negatively correlated with
increasing area-level socio-economic status quartile (Spearman PM2.5–

-0.16 P < 0.001, NO2 -0.12 P < 0.001) indicating higher pollution
with higher disadvantage. There were correlations between both pol-
lutants and marital status (ANOVA eta for PM2.5 = 0.11, P < 0.001
and for NO2 = 0.14, P < 0.001) with single people having higher
average exposure than partnered people. There were also correlations
between both pollutants and being born in Australia (ANOVA eta for
both PM2.5 and NO2 = 0.09, P < 0.001) with people born in Australia

having lower average exposure than those born overseas.
Cohort average PM2.5 and NO2 exposure were generally lower than

comparable cohorts from around the world. In our cohort PM2.5 annual
average was around 4.5 μg/m3 and NO2 average of 17.8 μg/m3. Fig. 2
shows histograms of the cohort exposures.

Table 3 shows the results of our statistical models of all-cause
mortality and exposure to air pollution for models A, B, C and D. Hazard
ratios (HRs) with 95% confidence intervals (CIs) are expressed for 1 μg/
m3 change in PM2.5 and 5 μg/m3 change in NO2.

All models show that both pollutants had an adverse effect on
mortality (i.e., HR estimates all greater than one), as shown in Table 3.
Models A and B had statistically significant associations between both
pollutants and all-cause mortality. Associations in Models C and D were
above one but non statistically significant. We considered Model D as
our main model because in our assessment it should adequately adjust
for individual and area-level risk factors based on previous literature.
Full results for all covariates included in Model D are shown in Sup-
plemental Material Table S2. The Model D HR was 1.05 (95% CI
0.98–1.12) for each 1 μg/m3 increase in PM2.5 exposure and 1.03 (95%
CI 0.98–1.07) for each 5 μg/m3 increase in NO2 (in separate single
pollutant models). Including marital status and sufficient physical ac-
tivity (Model C) and area-level SES (Model D) reduced the magnitude
and statistical significance of HR for both pollutants compared to Model
B.

We conducted several sensitivity analyses and present the addi-
tional details in the Supplemental Material. Briefly, we assessed results
for Model D when missing data were predicted using a recursive par-
titioning method. This increased the number of participants to the full
sample of 85,846. The HR for PM2.5 was reduced to 1.02 (95%CI
0.96–1.09) while the HR for NO2 was slightly reduced (1.02, 95%CI
0.99–1.06). The interaction between gender and pollutants did not
reach significance (assessed using the difference in BIC). However, the
difference in the coefficients for each gender subgroup indicated po-
tential differences, with an estimated HR for males of 1.08 (95% CI
1.00–1.17) per 1 μg/m3 increase in PM2.5 and an HR of 1.05 (95% CI
1.00–1.10) for a 5 μg/m3 increase in NO2. No strong HR was observed
among females in this interaction model. The addition of a location
random effect increased the HRs slightly, compared to their equivalents
without random effects however the random effect term was non-sig-
nificant in Model D for both pollutants (p-value ~0.1 for both). When
we assessed non-linearity in the exposure-response functions, neither
pollutant exhibited a significant non-linear exposure-mortality relation
(tested using splines with 3,4 or 5 knots assessed using difference in
BIC). The inclusion of ozone in the NO2 model to account for potential
confounding by this pollutant did not find any notable change in the
point estimate or confidence intervals for NO2. Finally, extending the
study area to a 300 km × 300 km area around Sydney nearly doubled
the number of study subjects compared with the primary analysis. The
HRs for both pollutants were similar to our main results for Models D.
Full results of sensitivity analyses are shown in Supplemental Material
Table S3.

4. Discussion

We found evidence of adverse associations between long-term ex-
posure to PM2.5 and NO2 and all-cause mortality at the relatively low
levels of exposure found in Sydney. The magnitude of the HR point
estimates in each of our candidate models were larger than those from
other cohorts with generally higher pollution concentration environ-
ments than in our study region. Although these associations in our main
confounder models were not statistically significant this suggests the
slope of the PM2.5-mortality exposure-response relation may be steeper
at the lower end of the exposure range and is consistent with results
from work on integrated exposure response functions reported in
Burnett et al. (2014) and Burnett et al. (2018). The HRs from our study
were reduced and became non-significant when we adjusted for the
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Fig. 1. Map of study area, black rectangle denotes the inner domain used for our main models. A) includes PM2.5 annual average, and B) shows NO2 annual average.
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additional covariates of marital status, sufficient physical activity and
area-level SES. In addition, using imputed missing values also reduced
the HRs. This may reflect the small exposure contrast or bias such as
exposure misclassification, confounding or overadjustment by these air
pollution correlated covariates.

Our study's participants had lower exposure, on average, than those
in other cohorts. The mean long-term PM2.5 for our cohort was 4.5 μg/
m3 (range 3–14 μg/m3) and for NO2 was 17.8 μg/m3 (range 8–72 μg/
m3). For comparison, the average PM2.5 was higher (16 μg/m3) in the
follow up of the Harvard Six Cities study (Lepeule et al., 2012), and
14 μg/m3 in the spatial analysis of American Cancer Society Cancer
Prevention Study II Cohort subjects residing in California (Jerrett et al.,
2013). The ESCAPE cohorts (Beelen et al., 2014) observed cohort
average PM2.5 levels ranging from 7.7 to 31.0 μg/m3 and NO2 from 5.2
to 59.8 μg/m3. Cohort average NO2 concentrations where also generally
higher in the 15 cohorts included in Hoek et al. (2013) which ranged
from 17.0 to 67.0 μg/m3.

We found HRs for PM2.5 of 1.05 per 1 μg/m3 (95% CI 0.98–1.12)
and for NO2 of 1.03 per 5 μg/m3 (95% CI 0.98–1.07) in our Model D

which adjusted for individual-level risk factors (smoking, alcohol con-
sumption, body-mass index, educational level, born in Australia, suffi-
cient physical activity and working status) alongside an area-level SES
index and random intercept for potential spatial clustering. Our esti-
mated air pollution exposure levels were correlated with marital status,
born in Australia and area-level SES, and these were included as they
may represent important confounding factors by providing additional
adjustment for unmeasured variables (such as enhanced social net-
works and increased cash flow for couples). When we included marital
status, physical activity and area-level SES variables in Models C and D,
the HRs were reduced compared with Model B, albeit still greater than
one, and became non-significant at the 0.05 level. However, it is also
possible that adjusting for these variables has resulted in over-
adjustment (Gelman and Hill, 2007; Rothman and Greenland, 2005),
reducing the magnitude and strength of associations between air pol-
lution and mortality. We observed associations between pollution with
marital status, country of birth and area-level SES. Our model checking
also included testing for spatial clustering by adding location random
effects and a test for a non-linear exposure-response curve. Our results
for Model D were robust to these additional tests. Model checking using
imputed missing data found a reduced HR for PM2.5 of 1.02 but only
slightly reduced the HR for NO2.

In one meta-analysis of long term PM2.5 and all-cause mortality in
cohorts from Europe (Beelen et al., 2014) found a pooled effect estimate
of 1.014 (95% CI 1.004–1.025) per 1 μg/m3 increase in PM2.5 with
average cohort exposure levels between 8 and 31 μg/m3, while another
review of cohorts from North America and Europe reported a pooled
estimate of 1.006 (95%CI 1.004, 1.008) per 1 μg/m3 for all-cause
mortality (average cohort exposure levels were between 4 and 28 μg/
m3)(Hoek et al., 2013). For comparison our Sydney Model D HR was
larger (1.05, 95%CI 0.98–1.12) per 1 μg/m3 and the average cohort
exposure level was 4.5 μg/m3. Regarding NO2 (Faustini et al., 2014)
reported a meta-analysis for associations with all-cause mortality from
studies in Asia, North America and Europe which found similar mag-
nitude effect estimates to our findings, with a pooled estimate of 1.08
(95% CI 1.04–1.13) per 5 μg/m3 increase. However other meta-analyses
have found lower estimates for NO2 such as 1.005 (95% CI
0.995–1.015) per 5 μg/m3 increase reported by (Beelen et al., 2014)
and 1.027 (95% CI 1.015–1.039) per 5 μg/m3 increase by (Hoek et al.,
2013). A visual comparison is shown in Fig. 3 between our estimated
HRs from Model D with 1) the HRs for PM2.5 from the 41 cohorts re-
ported by Burnett et al. (2018) (Panel A), and 2) the HRs for NO2 from
the 22 cohorts reported by (Beelen et al., 2014) (Panel B). We have re-
scaled all HRs in Fig. 3 to represent the increased risk of an exposure
increase from zero to the mean of exposure reported for each cohort.
These images imply the association between PM2.5 or NO2 exposure
with all-cause mortality may continue even at the relatively low levels
in our Sydney cohort, which are among the lowest levels of the cohorts
studied.

Gender differences for air pollution and mortality risk have been
found in some studies but while there was some suggestion for this in
our study the evidence was not strong. For example, the ESCAPE study
found in men a HR for PM2.5 of 1.03 (95% CI 1.01–1.04) per 1 μg/m3

compared to no association for women 1.00 (95% CI 0.98–1.01) (Beelen
et al., 2014). However, our results were merely suggestive that the
magnitude of the effects of pollutants may be larger in men. Our models
showed an effect estimate in males of 1.08 (95% CI 1.00–1.17) for
PM2.5 and 1.05 (95% CI 1.00–1.10) for NO2; compared to null effects

Table 1
Population characteristics for those study participants with baseline age <
80 years.

N % Of
sample

No. died % Died

Overall Total 75,268 100.0% 3282 4.4%
Gender Male 35,793 47.6% 2134 6.0%

Female 39,475 52.4% 1148 2.9%
Age at baseline 45–54 27,247 36.2% 351 1.3%

55–64 27,508 36.5% 785 2.9%
65–74 15,616 20.7% 1230 7.9%
75–79* 4897 6.5% 916 18.7%

Smoking Current 5194 6.9% 400 7.7%
Status Past 25,542 33.9% 1486 5.8%

Never 44,532 59.2% 1396 3.1%
BMI Underweight 880 1.2% 80 9.1%

Normal weight 29,236 38.8% 1199 4.1%
Overweight 29,476 39.2% 1204 4.1%
Obese 15,676 20.8% 799 5.1%

Enrolment 2006–2007 15,614 20.7% 1057 6.8%
Year 2008–2009 59,654 79.3% 2225 3.7%
Alcoholic drinks

(per week)
None 23,146 30.8% 1247 5.4%
1–7 27,654 36.7% 999 3.6%
8–14 13,919 18.5% 492 3.5%
15+ 10,549 14.0% 544 5.2%

Marital status Single 17,533 23.3% 1090 6.2%
Partnered 57,735 76.7% 2192 3.8%

Work status Employed 44,757 59.5% 792 1.8%
Not employed 30,511 40.5% 2490 8.2%

Education Low (NA or School
Cert.)

18,401 24.4% 1135 6.2%

Mid (High school
Cert./Trade)

31,459 41.8% 1393 4.4%

High (University) 25,408 33.8% 754 3.0%
Born in Australia No 26,499 35.2% 1104 4.2%

Yes 48,769 64.8% 2178 4.5%
Sufficient physical

activity
No 22,298 29.6% 1421 6.4%
Yes 52,970 70.4% 1861 3.5%

Area SES 1st Low 16,403 21.8% 981 6.0%
2nd 20,038 26.6% 922 4.6%
3rd 19,656 26.1% 758 3.9%
4th High 19,171 25.5% 621 3.2%

*Aged 80+ at baseline were excluded.

Table 2
Descriptive statistics for PM2.5 (μg/m3) and NO2 (μg/m3) at participants' addresses for those with baseline age < 80 years.

Pollutant N Mean Median SD Min–max 10th pct. 25th pct. 75th pct. 90th pct. IQR

PM2.5 76,938 4.49 4.47 0.61 2.78–13.81 3.74 4.10 4.92 5.22 0.82
NO2 76,813 17.75 17.14 4.80 8.49–72.43 12.35 14.25 20.33 23.93 6.08
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for women (PM2.5 = 1.01, 95% CI 0.92–1.11; NO2 = 0.99, 0.92–1.06).
However, the tests for model improvement using BIC did not show
strong support for effect modification by gender.

The evidence we found supports a detrimental association between
PM2.5 and mortality. A range of plausible mechanisms for these mor-
tality effects have been identified in the literature such as oxidative
stress, respiratory irritation and toxicity of adsorbed chemical com-
pounds (Brook et al., 2010; Franklin et al., 2015). Furthermore, our
results provide some support for the suggestion that PM2.5 may not
have a ‘safe’ threshold and this would have important implications for
policymakers implementing control strategies to reduce the health
burden due to air pollution. If no safe threshold exists for PM2.5 ex-
posure then substantial investment in emission reduction toward
background exposure levels is required, however this will be offset by
substantial co-benefits to health.

We expect the air pollution and health findings from the ‘45 and Up
Study’ cohort in NSW to become increasingly important as longer
periods of cohort follow up data become available in coming years
(including cause specific data), along with improved estimates of both
NO2 and PM2.5 covering all of New South Wales, not only the Sydney
metropolitan region as is reported in this current study.

Our study contributes to the body of evidence required by policy
makers responsible for reducing the health burden due to air pollution.
There may be implications for researchers calculating cost-benefit es-
timates to guide changes to regulations of air pollution emissions and
land use.

Our study used a large prospective cohort with high quality in-
dividual level socio-demographic information, linked mortality data

and area-level SES from the population census and air pollution esti-
mates. The large number of cohort participants resident in the single
urban airshed of Sydney on the whole have experienced long-term ex-
posure to low levels of air pollution, by international standards, and this

Fig. 2. Histograms for the estimated pollutant concentrations for participants baseline address.

Table 3
Hazard ratios and 95% confidence intervals for our main models of all-cause
mortality and exposure to air pollution. PM2.5 models have n = 75,268 and HR
expressed per for 1 μg/m3 change. NO2 models have n = 75,145 and HR ex-
pressed per 5 μg/m3 change.

Pollutant Model HR 95% CI

PM2.5

1 μg/m3
Model A 1.09⁎ 1.03–1.16
Model B 1.08⁎ 1.02–1.14
Model C 1.05 0.99–1.12
Model D 1.05 0.98–1.12

NO2

5 μg/m3
Model A 1.04⁎ 1.01–1.08
Model B 1.04⁎ 1.01–1.08
Model C 1.03 0.99–1.07
Model D 1.03 0.98–1.07

Model A = age as time axis, sex, and year of enrolment; Model B = smoking
status, alcohol consumption, BMI, educational level, working status and born in
Australia; Model C = Model B + marital status + sufficient physical activity;
Model D = Model C + location random intercept + area-level SES.

⁎ P-value ≤ 0.05.

Fig. 3. Visual comparison between our estimated HRs from Model D with: A)
the HRs for PM2.5 from the 41 cohorts reported by Burnett et al. (2018), and B)
the HRs for NO2 from the 22 cohorts reported by Beelen et al. (2014).
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is a key strength of our study.
Limitations of this study include the relatively short period of follow

up (~7 years) and relatively large PM2.5 spatial unit (1 km grid cells).
Our exposure estimates are also likely to include error due to the lack of
historical geocoded street addresses available for the previous addresses
of participants, so we assumed that exposure around the time of re-
cruitment is representative of long-term exposure.

Another limitation is due to the nature of cohort studies, including
the ‘healthy volunteer effect’ (Lindsted et al., 1996), so that the ‘45 and
Up Study’ will not necessarily be directly representative of the general
NSW population 45 and over (Banks et al., 2008). Nevertheless,
methodological assessments such as Ponsonby et al. (1996) and
Rothman et al. (2013) have found that associations observed within
non-representative subsets of the sample population can still give reli-
able inferences, especially in cohort studies with good follow-up, so
long as internal validity can be assumed. A key issue in assessing in-
ternal validity is potential selection bias whereby the inclusion of par-
ticipant's data is conditioned on both the exposure and outcome vari-
ables in the analysis (Lash et al., 2009). This might occur in the case of
systematic missing data, or if participants were more or less likely to
join the study due to both their exposures and health status. While it is
virtually impossible for death (our primary outcome) to influence
participation (due to the linkage to the administrative death register
there is minimal attrition bias), it is possible that the general health
status of individuals may influence their decision to participate. Like-
wise, it is improbable that air pollution exposure itself would influence
the likelihood of participation, however individual socio-economic
variables (e.g. education) may influence an individual's decision to
participate as well as their exposure. In addition, postal survey data can
be less reliable than other collection methods (e.g. computer assisted
telephone interviewing, CATI). We consider the likely impact of these
biases to be low based on a previous analysis using the ‘45 and Up
Study’ cohort in which consistent estimates of exposure-outcome re-
lationships were found from internal comparisons within the cohort for
a broad range of risk factors when compared with a more representative
population survey of NSW using CATI data collection (Mealing et al.,
2010).

There are some sources of uncertainty in the CTM PM2.5 modelled
estimate even though statistics for model performance were quite good
(cross-validated R2 = 0.70). The estimates were generated by adding
up the CTM internal PM2.5 components from all the simulated anthro-
pogenic and natural source groups. There is uncertainty related to some
of the sources in the emissions inventory, as well as secondary aerosol
production. If emission sources/secondary particle formation are not
captured, therefore the CTM prediction will be an underestimate and so
an additional bias correction step that adjusts the modelled output by
blending it with observed data from pollution monitors was employed.

We conducted a sensitivity analysis by expanding our study region
to a larger 300 km × 300 km study region. The CTM 100 km × 100 km
model domain is nested within the larger 300 km × 300 km region,
which is itself nested within larger regional and continental scale
models. This means that local grid cells resolve information drawn from
both local sources as well as regional sources. The regional information
comes from national datasets so that all regional sources can contribute.
Therefore, long range transport of aerosols such as sea salt, dust, fires
and other upwind anthropogenic sources will be represented. With re-
gard to our NO2 model the regression model incorporates information
drawn from all emissions sources given by a national emissions in-
ventory within a region defined by the 10 km radius buffers around
each prediction node (thus covering the entire study region as well as a
buffer zone out to 10 km from the edge of the study region). We ob-
served similar HRs to our main Model D when we used this larger
300 km × 300 km study region. We consider it likely that there may be
increased exposure misclassification error, especially for PM2.5 where
the outer Sydney region only had 3 km grid cell estimates that were not
blended with monitor data.

Finally, there is a potential limitation related to missing data from
the death registry because it only records deaths which occurred in the
state of NSW. Thus, a small number of participants who may have died
in other states of Australia or overseas are not captured in this database,
however numbers are likely to be so low that we consider this issue
negligible for our analysis.

Our results were sensitive to the addition of the covariates: marital
status, physical activity and area-level SES. Further studies on this co-
hort are needed to evaluate the replicability of these results and will be
enhanced by improvements in exposure estimation methods and a
longer period of follow-up. For example, the five-year follow-up of the
45 and Up survey was conducted between 2012 and 2015 and we will
seek access to this linked dataset once the data are processed. The ad-
dition of several new years of mortality data will allow for more sta-
tistical power and cause-specific death records will enable more spe-
cificity in the analysis. Additionally, the first ‘45 and Up Study’ cohort
five-year follow-up survey will enable the potential effect of residential
mobility to be included. Lastly, improved air pollution modelling will
also need to be explored at higher spatial and temporal resolution, such
as incorporating blending methods of ground-based monitor data with
satellite images, CTM and land use data.

5. Conclusions

We found evidence of a detrimental association between PM2.5 and
NO2 with all-cause mortality in the low pollution concentration en-
vironment in Sydney, Australia. However, a clear determination of the
association with mortality is difficult because the results were not sta-
tistically significant. There was limited spatial variation in our pollution
exposure metric, and the results were sensitive to some covariates such
as marital status, sufficient physical activity, area-level SES and missing
data imputation. We tested several different models to explore the ro-
bustness to additional parameters and functional forms. The magnitude
of the hazard ratios were large compared with those reported in most
other cohort studies in the literature. Those other cohorts generally
came from countries which had higher pollution concentration en-
vironments than Sydney. This may imply a steeper slope of the ex-
posure-response curve at the lower end of the spectrum and health
impacts even at low levels of pollution concentration. Our results will
contribute to global meta-analysis and will enable more precise effect
estimates for health impact assessments.
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