32 research outputs found

    Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency.

    Get PDF
    The basic goal of this research is to determine the best combination of light wavelengths for use as a lighting countermeasure for circadian and sleep disruption during space exploration, as well as for individuals living on Earth. Action spectra employing monochromatic light and selected monochromatic wavelength comparisons have shown that short-wavelength visible light in the blue-appearing portion of the spectrum is most potent for neuroendocrine, circadian, and neurobehavioral regulation. The studies presented here tested the hypothesis that broad spectrum, polychromatic fluorescent light enriched in the short-wavelength portion of the visible spectrum is more potent for pineal melatonin suppression in healthy men and women. A total of 24 subjects were tested across three separate experiments. Each experiment used a within-subjects study design that tested eight volunteers to establish the full-range fluence-response relationship between corneal light irradiance and nocturnal plasma melatonin suppression. Each experiment tested one of the three types of fluorescent lamps that differed in their relative emission of light in the short-wavelength end of the visible spectrum between 400 and 500 nm. A hazard analysis, based on national and international eye safety criteria, determined that all light exposures used in this study were safe. Each fluence-response curve demonstrated that increasing corneal irradiances of light evoked progressively increasing suppression of nocturnal melatonin. Comparison of these fluence-response curves supports the hypothesis that polychromatic fluorescent light is more potent for melatonin regulation when enriched in the short-wavelength spectrum

    Impact of Solid State Roadway Lighting on Melatonin in Humans

    Get PDF
    Introduction: In 2009, the World Health Organization identified vehicle crashes, both injury-related and fatal, as a public health hazard. Roadway lighting has long been used to reduce crashes and improve the safety of all road users. Ocular light exposure at night can suppress melatonin levels in humans. At sufficient light levels, all visible light wavelengths can elicit this response, but melatonin suppression is maximally sensitive to visible short wavelength light. With the conversion of roadway lighting to solid state sources that have a greater short wavelength spectrum than traditional sources, there is a potential negative health impact through suppressed melatonin levels to roadway users and those living close to the roadway. This paper presents data on the impact of outdoor roadway lighting on salivary melatonin in three cohorts of participants: drivers, pedestrians, and those experiencing light trespass in their homes. Methods: In an outdoor naturalistic roadway environment, healthy participants (N = 29) each being assigned to a cohort of either pedestrian, driver, or light trespass experiment, were exposed to five different solid state light sources with differing spectral emissions and one no lighting condition. Salivary melatonin measurements were made under an average roadway luminance of 1.0 cd/m2 (IES RP-18 Roadway Lighting Requirements for expressway roads) with a corneal melanopic Equivalent Daylight Illuminances (EDI) ranging from 0.22 to 0.86 lux. Results: The results indicate that compared to the no roadway lighting condition, the roadway light source spectral content did not significantly impact salivary melatonin levels in the participants in any of the cohorts. Conclusions: These data show that recommended levels of street lighting for expressway roads do not elicit an acute suppression of salivary melatonin and suggest that the health benefit of roadway lighting for traffic safety is not compromised by an acute effect on salivary melatonin

    Sensitivity of the human circadian system to short wavelength (420 nm) light

    Get PDF
    The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment, melanopsin. Nine action spectrum studies using rodents, monkeys, and human for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 nm to 484 nm, with some disagreement in short wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420 nm light for plasma melatonin suppression. Adult female (N=14) and male (N=12) subjects participated in two studies, each employing a within-subjects design. In a fluence-response study, subjects (N=8) were tested with eight light irradiances at 420 nm ranging over a four log unit photon density range of 1010 to 1014 photons/cm2/sec and one dark exposure control night. In the other study, subjects (N=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 1013 photons/cm2/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420 nm light and melatonin suppression (p\u3c0.001) with a half-saturation constant of 2.74 x 1011 photons/cm2/sec. The second study showed that 460 nm light is significantly stronger than 420 nm light for suppressing melatonin (p\u3c0.04). Together, the results clarify the visible short wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications

    Regulation of L1 expression and retrotransposition by melatonin and its receptor: implications for cancer risk associated with light exposure at night.

    Get PDF
    Expression of long interspersed element-1 (L1) is upregulated in many human malignancies. L1 can introduce genomic instability via insertional mutagenesis and DNA double-strand breaks, both of which may promote cancer. Light exposure at night, a recently recognized carcinogen, is associated with an increased risk of cancer in shift workers. We report that melatonin receptor 1 inhibits mobilization of L1 in cultured cells through downregulation of L1 mRNA and ORF1 protein. The addition of melatonin receptor antagonists abolishes the MT1 effect on retrotransposition in a dose-dependent manner. Furthermore, melatonin-rich, but not melatonin-poor, human blood collected at different times during the circadian cycle suppresses endogenous L1 mRNA during in situ perfusion of tissue-isolated xenografts of human cancer. Supplementation of human blood with exogenous melatonin or melatonin receptor antagonist during the in situ perfusion establishes a receptor-mediated action of melatonin on L1 expression. Combined tissue culture and in vivo data support that environmental light exposure of the host regulates expression of L1 elements in tumors. Our data imply that light-induced suppression of melatonin production in shift workers may increase L1-induced genomic instability in their genomes and suggest a possible connection between L1 activity and increased incidence of cancer associated with circadian disruption

    Insulin and IGF1 enhance IL-17-induced chemokine expression through a GSK3B-dependent mechanism: a new target for melatonin\u27s anti-inflammatory action.

    Get PDF
    Obesity is a chronic inflammation with increased serum levels of insulin, insulin-like growth factor 1 (IGF1), and interleukin-17 (IL-17). The objective of this study was to test a hypothesis that insulin and IGF1 enhance IL-17-induced expression of inflammatory chemokines/cytokines through a glycogen synthase kinase 3β (GSK3B)-dependent mechanism, which can be inhibited by melatonin. We found that insulin/IGF1 and lithium chloride enhanced IL-17-induced expression of C-X-C motif ligand 1 (Cxcl1) and C-C motif ligand 20 (Ccl20) in the Gsk3b(+/+) , but not in Gsk3b(-/-) mouse embryonic fibroblast (MEF) cells. IL-17 induced higher levels of Cxcl1 and Ccl20 in the Gsk3b(-/-) MEF cells, compared with the Gsk3b(+/+) MEF cells. Insulin and IGF1 activated Akt to phosphorylate GSK3B at serine 9, thus inhibiting GSK3B activity. Melatonin inhibited Akt activation, thus decreasing P-GSK3B at serine 9 (i.e., increasing GSK3B activity) and subsequently inhibiting expression of Cxcl1 and Ccl20 that was induced either by IL-17 alone or by a combination of insulin and IL-17. Melatonin\u27s inhibitory effects were only observed in the Gsk3b(+/+) , but in not Gsk3b(-/-) MEF cells. Melatonin also inhibited expression of Cxcl1, Ccl20, and Il-6 that was induced by a combination of insulin and IL-17 in the mouse prostatic tissues. Further, nighttime human blood, which contained high physiologic levels of melatonin, decreased expression of Cxcl1, Ccl20, and Il-6 in the PC3 human prostate cancer xenograft tumors. Our data support our hypothesis and suggest that melatonin may be used to dampen IL-17-mediated inflammation that is enhanced by the increased levels of insulin and IGF1 in obesity

    Smart Lighting Clinical Testbed Pilot Study on Circadian Phase Advancement

    Get PDF
    Objective: Lighting is a strong synchronizer for circadian rhythms, which in turn drives a wide range of biological functions. The objective of our work is a) to construct a clinical in-patient testbed with smart lighting, and b) evaluate its feasibility for use in future clinical studies. Methods: A feedback capable, variable spectrum lighting system was installed at the University of New Mexico Hospital. The system consists of variable spectrum lighting troffers, color sensors, occupancy sensors, and computing and communication infrastructure. We conducted a pilot study to demonstrate proof of principle, that 1) this new technology is capable of providing continuous lighting and sensing in an active clinical environment, 2) subject recruitment and retention is feasible for round-the-clock, multi-day studies, and 3) current techniques for circadian regulation can be deployed in this unique testbed. Unlike light box studies, only troffer-based lighting was used, and both lighting intensity and spectral content were varied. Results: The hardware and software functioned seamlessly to gather biometric data and provide the desired lighting. Salivary samples that measure dim-light melatonin onset showed phase advancement for all three subjects. Conclusion: We executed a five-day circadian rhythm study that varied intensity, spectrum, and timing of lighting as proof-of-concept or future clinical studies with troffer-based, variable spectrum lighting. Clinical Impact: The ability to perform circadian rhythm experiments in more realistic environments that do not overly constrain the subject is important for translating lighting research into practice, as well as for further research on the health impacts of lighting

    Circadian, neuroendocrine and neurobehavioral effects of polychromatic light in humans.

    Get PDF
    Abstract In the last eighteen years there has been the identification of a novel photopigment, melanopsin, and its subsequent localization to human intrinsically photosensitive retinal ganglion cells (ipRGCs). Since melanopsin’s peak sensitivity is in the short wavelength portion of the visible spectrum (from 447 nm to 484 nm), there has been a steady increase in studies investigating the physiological effects of blue light. This thesis examines polychromatic light mixtures of blue light for circadian, neuroendocrine and neurobehavioral effects in humans. White blue-enriched fluorescent lamps were tested at equal photon densities for increased efficacy for melatonin suppression, increased alertness, and circadian phase shifting. Results demonstrated that compared to white fluorescent light, blue-enriched fluorescent light was significantly stronger for suppressing melatonin and resulted in significantly reduced subjective sleepiness. Blue-enriched light, however, was not significantly stronger in eliciting circadian phase-delay or increasing objective measures of alertness. Next, blue-appearing narrowband solid-state light was examined for its ability to acutely suppress nocturnal melatonin as well as enhance cognitive performance and alertness in healthy men and women when compared to dim white lighting. The results demonstrated that narrowband blue solid-state light was significantly stronger for melatonin suppression compared to dim white light. Subjective and objective assessments of alertness, however, were not significantly increased by blue-enriched light exposure. The final study tested the hypothesis that certain combinations of light wavelengths are additive or opponent to the photoreceptor system that mediates the melatonin suppression. The results demonstrated that the melatonin suppression responses to dual narrow bandwidth light combinations were not significantly different from single wavelength exposures. Taken together, the results suggest that melanopsin sensitivity is not the sole consideration for predicting the efficacy of white polychromatic lighting. The different effects of blue light on alertness, circadian phase-shifting and melatonin suppression imply a either a context dependent sensitivity and/or differential involvement of the classical photoreceptors in these light responses

    Air Pollution and Atopic Dermatitis, from Molecular Mechanisms to Population-Level Evidence: A Review

    No full text
    Atopic dermatitis (AD) has increased in prevalence to become the most common inflammatory skin condition globally, and geographic variation and migration studies suggest an important role for environmental triggers. Air pollution, especially due to industrialization and wildfires, may contribute to the development and exacerbation of AD. We provide a comprehensive, multidisciplinary review of existing molecular and epidemiologic studies on the associations of air pollutants and AD symptoms, prevalence, incidence, severity, and clinic visits. Cell and animal studies demonstrated that air pollutants contribute to AD symptoms and disease by activating the aryl hydrocarbon receptor pathway, promoting oxidative stress, initiating a proinflammatory response, and disrupting the skin barrier function. Epidemiologic studies overall report that air pollution is associated with AD among both children and adults, though the results are not consistent among cross-sectional studies. Studies on healthcare use for AD found positive correlations between medical visits for AD and air pollutants. As the air quality worsens in many areas globally, it is important to recognize how this can increase the risk for AD, to be aware of the increased demand for AD-related medical care, and to understand how to counsel patients regarding their skin health. Further research is needed to develop treatments that prevent or mitigate air pollution-related AD symptoms
    corecore