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Abstract  The circadian and neurobehavioral effects of light are primarily mediated by a retinal 

ganglion cell photoreceptor in the mammalian eye containing the photopigment, melanopsin. 

Nine action spectrum studies using rodents, monkeys, and human for these responses indicate 

peak sensitivities in the blue region of the visible spectrum ranging from 459 nm to 484 nm, with 

some disagreement in short wavelength sensitivity of the spectrum.  The aim of this work was to 

quantify the sensitivity of human volunteers to monochromatic 420 nm light for plasma 

melatonin suppression. Adult female (N=14) and male (N=12) subjects participated in two 

studies, each employing a within-subjects design. In a fluence-response study, subjects (N=8) 

were tested with eight light irradiances at 420 nm ranging over a four log unit photon density 

range of 10
10 

to 10
14 

photons/cm
2
/sec and one dark exposure control night.  In the other study, 

subjects (N=18) completed an experiment comparing melatonin suppression with equal photon 

doses (1.21 x 10
13 

photons/cm
2
/sec) of 420 nm and 460 nm monochromatic light and a dark 

exposure control night. The first study demonstrated a clear fluence-response relationship 

between 420 nm light and melatonin suppression (p<0.001) with a half-saturation constant of 

2.74 x 10
11 

photons/cm
2
/sec.  The second study showed that 460 nm light is significantly stronger 

than 420 nm light for suppressing melatonin (p<0.04).  Together, the results clarify the visible 

short wavelength sensitivity of the human melatonin suppression action spectrum.  This basic 

physiological finding may be useful for optimizing lighting for therapeutic and other 

applications. 
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Introduction 

 Light can be a potent therapeutic intervention for patients with selected affective and 

sleep disorders as well as healthy individuals who have circadian disruption due to shift work, 

transcontinental jet travel, or manned space flight (Commission Internationale de l'Eclairage 

(CIE), 2004; CIE, 2006; Dijk et al., 2001). The ocular photoreceptive physiology that supports 

the therapeutic capacity of light, however, has been described only in a nascent fashion. 

 Two action spectra identified 446-477 nm as the most potent wavelength region for acute 

plasma melatonin suppression in human subjects (Brainard et al., 2001; Thapan et al., 2001).  

Data from both studies shared many similarities and suggested that a novel vitamin A 

retinaldehyde-based photopigment was primarily responsible for this effect. There was poor 

agreement between these studies, however, on the sensitivity to light at 420-424 nm.  One action 

spectrum tested subjects with 420 nm at two different intensities and calculated that 420 nm 

would be substantially weaker than the peak wavelength in the melatonin action spectrum 

(Brainard et al., 2001).  In contrast, the other action spectrum tested 424 nm at four intensities 

and showed that 424 nm was substantially stronger than the peak wavelength of its action 

spectrum (Thapan et al., 2001). 

 Recently, there has been an upheaval in understanding the photoreceptive input to the 

circadian system. A new photopigment, named melanopsin, has been localized in the retinas of 

rodents, monkeys, and humans (Provencio et al., 2000).  Melanopsin is found in a specific 

subtype of retinal output neuron, the intrinsically photosensitive ganglion cells (ipRGCs) that 
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project to the suprachiasmatic nuclei (SCN) (Berson et al., 2002; Hattar et al., 2002; Gooley et 

al., 2001). The ipRGC responses to light appear to parallel those of melatonin suppression and 

photic entrainment, suggesting that these cells are primary photoreceptors involved in circadian 

regulation (Berson et al., 2002; Hattar et al., 2002).  

 Altogether, nine analytic action spectra in humans, monkeys, and rodents have 

demonstrated the wavelength sensitivity of physiological responses that are mediated by the 

newly characterized ipRGCs (Brainard et al., 2001; Thapan et al., 2001; Hattar et al., 2002; 

Hattar et al., 2003; Dacey et al., 2005; Gamlin et al., 2007; Brainard and Hanifin, 2005, for 

review). Notably, all of the action spectra were fit to single opsin nomograms with high 

coefficients of correlation and indentify shorter wavelength peak photosensitivities in the blue 

region of the visible spectrum with calculated peaks ranging from 459 nm to 484 nm.  Despite 

differences in laboratories, physiological endpoints, animal models, and specific techniques, 

there is a consistent detection of peak responses in the blue spectrum (Brainard and Hanifin, 

2005; for review). Together, these studies suggest that a novel ocular photoreceptor system is 

involved in phototransduction for circadian, neuroendocrine, and other neurobehavioral 

responses (such as pupil constriction, acute alerting effects, cognitive responses and the like).  

 Three recent studies have provided compelling evidence that melanopsin is the 

photopigment that mediates ipRGC phototransduction (Melyan et al., 2005; Qiu et al., 2005; 

Panda et al., 2005). Specifically, when mouse cells are transfected with the human melanopsin 

gene they become photosensitive with peak response deeper into the violet – indigo portion of 

the visible spectrum in the range of 360-430 nm (Melyan et al., 2005).  That pattern of 

photosensitivity encompasses the in vitro peak absorption spectrum of melanopsin (Newman et 

al., 2003). In contrast, human kidney cells transfected with the mouse melanopsin gene are light 

responsive with peak sensitivity at 479 nm (Qiu et al., 2005).  Likewise, the expression of mouse 
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melanopsin in Xenopus oocytes confers peak sensitivity at 480 nm (Panda et al., 2005).   These 

latter two studies identify peaks that are reflective of the action spectra that peak in the blue 

spectrum (Gamlin et al., 2007; Brainard and Hanifin, 2005, for review).  Clearly, there is not 

complete agreement in specific wavelength sensitivity across the action spectra studies, the study 

on melanopsin absorption spectrum, and the photic responses of cells transfected with the 

melanopsin gene.  The collective results are consistent, however, in demonstrating a wavelength 

signature in the short wavelength visible spectrum that appears distinct from the wavelength 

sensitivity of rod and cone systems that mediate vision.  

 The aim of this study was to quantify the sensitivity to monochromatic 420 nm for pineal 

melatonin suppression in humans. The data demonstrate that there is a fluence-response 

relationship between 420 nm light and melatonin suppression that is consistent with the fluence-

response curves for eight other wavelengths (Brainard et al., 2001).  A second study shows that 

460 nm light is approximately twice as strong as 420 nm light for suppressing plasma melatonin.  

Together, the results clarify the short visible wavelength sensitivity of the human melatonin 

suppression action spectrum.  

 

Research Design and Methods 

Study designs 

In the first study, 8 subjects completed a within-subjects fluence-response experiment that 

tested eight light irradiances at 420 nm and one dark exposure control night on nocturnal 

melatonin suppression.  In the second study, 18 subjects completed a within-subjects experiment 

comparing melatonin suppression with equal photon doses of 420 nm and 460 nm 

monochromatic light and a dark exposure control night.  
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Subjects 

 The healthy subjects in both studies had a mean ± SEM age of 24.5 ± 0.6, demonstrated 

normal color vision by the Ishihara test, had a mean wake up time of 6:54 AM ± 18 min, and 

signed an approved IRB consent document. All subjects in the fluence-response study also 

demonstrated normal color vision by their Farnsworth Munsell D-100 color vision score (mean ± 

SEM of 47.1 ± 6.8).  Five females and three males were in the dose response study.  Nine 

females and nine males were in the 420/460 nm comparison study. 

 

Light exposure protocol 

As described in detail elsewhere (Brainard et al., 2001), each experiment began at 

midnight when subjects had their pupils dilated with 0.5% Cyclopentolate, were blindfolded, and 

remained awake and sitting upright in darkness for 120 min.  While blindfolded, a blood sample 

was taken just prior to 2:00 AM and subjects were then exposed to a 90 min light stimulus until 

3:30 AM.  During light exposure, each subject sat quietly with their eyes open and their head 

resting in an ophthalmologic head holder facing a patternless, white Ganzfeld apparatus 

encompassing their entire visual field.  At 3:30 AM, a second blood sample was taken.  Each 

subject was exposed to complete darkness from 2:00 to 3:30 AM on the control night.  There 

were at least 6 days between each nighttime test. Melatonin was quantified with a RIA with a 

minimum detection limit of 0.5 - 5.0 pg/mL (Brainard et al., 2001).  RIA control samples had 

14% and 22% interassay coefficients of variation.  

Light production and measurement 

As detailed elsewhere, monochromatic wavelengths were produced by arc lamps 

collimated into a grating monochromator (Brainard et al., 2001). The resulting light beam was 

directed into the top area of a Ganzfeld dome and reflected evenly off the dome surface into 
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volunteers' eyes.  Half-peak bandwidths of the monochromatic stimuli were 14 nm for the dose-

response study and 10 nm for the comparison study. Wavelengths at the level of subjects' corneas 

were measured with a portable spectroradiometer (Ocean Optics S2000). Routine measurement 

of the light irradiance (µW/cm
2
) was done with both a Tektronix J16 Radiometer/Photometer 

with a J6512 irradiance probe which was not cosine corrected and an International Light 1400A 

with an SEL033 #6857 detector head with an F #23102 filter and cosine correction. Each of these 

meters was calibrated annually and was benchmarked to a reference  meter (EG & G Model 580-

23A Detector) at the Laser/Optical Radiation Program (Aberdeen Proving Ground, MD).  All 

spectroradiometric and radiometric equipment was calibrated with a standard lamp traceable to 

NIST.  Experimental light stimuli were measured at volunteers' eye level immediately before and 

after the 90 min exposure.  In the 420 nm fluence-response study, intensities covered a 4 log unit 

photon density range of 10
10 

to 10
14 

photons/cm
2
. In the study comparing 420 and 460 nm, the 

photon density was 1.21 x 10
13 

photons/cm
2
/sec. An earlier study, which measured mean 

transmittance of 36 postmortem lenses of humans aged 20 to 30 years, showed relatively even 

transmission from 440 to 600 nm but a strong reduction in transmittance below 440 nm (Brainard 

et al., 1997).  Since mean ± SEM % lens transmittance at 420 and 460 nm was 37.23 ± 7.88 and 

56.33 ± 10.1 corneal light irradiances at 420 nm were adjusted to compensate for reduced 

stimulus transmission to the retina in both of the studies.  

 

Statistics 

Two-tailed, Students' t tests were used to assess significance of raw melatonin change.  

The melatonin data were then converted to % control-adjusted melatonin change scores (Brainard 

et al., 2001).  Sets of pre-exposure melatonin values and % control-adjusted melatonin change 

scores were analyzed with one-way, repeated measures ANOVA.  Significant differences 
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between groups were assessed with post-hoc Fisher PLSD test with alpha at 0.05.  A fluence-

response curve was fit to a 4 parameter model for the mean % control-adjusted melatonin 

suppression data. The formula for this curve includes factors derived from earlier work on the 

melatonin suppression action spectrum (Brainard et al., 2001).  Fit of the data to the curve was 

assessed by coefficient of correlation.  

Results 

The fluence-response data are illustrated in Figures 1 and 2.  There were no significant 

differences (F=0.69, df=8, p = 0.70) between sets of pre-exposure melatonin values indicating 

that 2:00 AM plasma levels were consistent across all of the study nights.  Figure 1 shows the 

mean ± SEM pre- and post-exposure melatonin values. Paired Students' t tests showed significant 

melatonin suppression by retinal irradiances at or above 11 µW/cm
2
. All melatonin data were 

converted to control-adjusted % change scores (Brainard et al., 2001) and ANOVA showed a 

significant effect of retinal light intensity on melatonin % control-adjusted change scores 

(F=11.74, p<0.0001). Post hoc Fisher PLSD tests demonstrated that compared to the lowest 

irradiance of 0.016 µW/cm
2
, intensities at or above 4.1 µW/cm

2
 significantly suppressed 

melatonin.  In all cases, irradiances above 4.1 µW/cm
2
 were significantly stronger in suppressing 

melatonin compared to the irradiances two steps lower.  Figure 2 illustrates a sigmoidal fluence-

response curve plotting melatonin % control-adjusted scores against photon density. The curve 

formula is inset in the figure (R
2
 = 0.93).    

  = = = Figures 1 and 2 about here = = = 

 In the wavelength comparison study, for the 420 nm and 460 nm light exposure and the 

dark control nights, mean pre-exposure raw melatonin values were 73.9 ± 8.7, 68.3 ± 7.6 and 

69.8 ± 8.6 pg/mL, respectively.  There were no significant differences (F=1.27, df=2, p=0.29) 
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across these values, indicating that melatonin levels were consistent across all study nights. Mean 

post-exposure scores were 84.4 ± 10.4, 76.1 ± 9.5 and 56.6 ± 8.8 pg/mL, respectively.  Melatonin 

did not change significantly relative to the 420 nm exposure (t=0.34, df=17, p=0.74), decreased 

significantly with the 460 nm exposure (t=2.25, df=17, p<0.04), and increased significantly 

during the control night (t=-3.32, df=17, p<0.001). For direct comparison of responses to 420 and 

460 nm, Figure 3 illustrates % control-adjusted melatonin suppression at equal retinal photon 

densities.  These data reveal that 460 nm is significantly stronger than 420 nm in suppressing 

melatonin (t=2.3, df=17, p<0.04), although five of the 19 subjects had a greater melatonin 

suppression response to 420 versus 460 nm light.  In this study, there was good repeatability in 

mean ± SEM melatonin suppression responses compared to the fluence-response experiments.  In 

the published 460 nm fluence-response curve (Brainard et al., 2001), 1.21 x 10
13 

photons/cm
2
/sec 

elicited a 45.3 ± 11.5 % control-adjusted melatonin suppression while in this study that photon 

dose elicited a 44.4 ± 9.1 % control-adjusted melatonin suppression.  Similarly, in the 420 nm 

fluence-response curve described above and in this study, 1.21 x 10
13 

photons/cm
2
/sec exposure 

elicited a 22.8 ± 9.7 % and a 20.2 ± 9.1 % control-adjusted melatonin suppression, respectively. 

   = = = Figure 3 about here = = = 

Discussion 

The present data demonstrate a full fluence-response relationship between 420 nm 

exposure and melatonin suppression in humans.  The 420 nm curve is consistent with the 

fluence-response curves for eight other monochromatic wavelengths in the original melatonin 

suppression action spectrum (Brainard et al., 2001).  In that action spectrum, a 420 nm half-

saturation constant of 18.3 x 10
12 

photons/cm
2
/sec was estimated from a very limited data set. 

That estimate was reasonably consistent but lower than the half saturation constant of 27.4 x 10
12 
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photons/cm
2
/sec derived from the complete fluence-response curve. This new 420 nm data point 

has a better fit to the original action spectrum model, but does not change the calculated peak 

(464 nm, 446-477 nm +/- 1 sd) since the curve fitting method is based on the long-wavelength 

limb of sensitivity of the action spectrum (Partridge and DeGrip, 1991). The within-subjects 

comparison showed that 460 nm light is significantly stronger than 420 nm light for suppressing 

melatonin.  These results clarify the short visible wavelength sensitivity of the human melatonin 

suppression action spectrum. 

 The acute light-induced melatonin suppression response is a broadly used indicator for 

photic input to the SCN and has been used to elucidate the ocular and neural physiology for 

circadian and neuroendocrine regulation (CIE, 2004; CIE, 2006; Brainard et al., 1997). Although 

full analytic action spectra have yet to be developed, a set of studies has confirmed that blue 

monochromatic light is more potent than other wavelengths for evoking circadian phase shifts 

and enhancing acute alertness in humans (Lockley et al., 2003; Cajochen et al., 2005).  Together, 

those results are consistent with the nine more fully developed analytic action spectra for 

circadian and neuroendocrine responses (Brainard and Hanifin, 2005, for review).  

 The 420 nm results are consistent with the results of two in vitro studies in which cells 

transfected with the melanopsin gene exhibit peak photosensitivities at 479 nm and 480 nm (Qiu 

et al., 2005; Panda et al., 2005).  In addition, studies on amphioxus melanopsin show a peak 

absorbance near 485 nm (Koyanagi et al., 2005).  Together, the nine in vivo action spectra and 

the three in vitro studies indicate peak sensitivity in the blue part of the spectrum.  In contrast, 

two in vitro studies show peaks in the violet-indigo-ultraviolet parts of the spectrum. 

Specifically, mouse cells transfected with the melanopsin gene have a peak photosensitivity in 

the range of 360-430 nm and the direct absorption spectrum for melanopsin showed the strongest 

activation by 420-440 nm light (Melyan et al., 2005; Newman et al., 2003).  This discrepancy 
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may be due to the difference of in vitro melanopsin responsiveness by itself or in a given cell 

type versus its in vivo presence in ipRGCs that are closely connected to other retinal cells. There 

is increasing evidence that melanopsin may function as an invertebrate-like, bistable 

photopigment with both sensory and regenerative functions that have differing peaks of 

wavelength sensitivity (Koyanagi et al., 2005; Mure et al., 2007; Rollag, 2008).  Hence, some in 

vitro systems may not match the systemic action spectra due to the blending of different 

melanopsin isomerization states.  Further work is needed to clarify how the ipRGC-melanopsin 

system supports the wavelength sensitivity of systemic action spectra.  

 Despite abundant evidence that the melanopsin containing ipRGCs provide primary input 

for circadian and neuroendocrine phototransduction, the rod and cone photoreceptors still play a 

role in this physiology. Melanopsin- and cone-knockout mice show that the classical visual 

photoreceptors can compensate for the loss of melanopsin and, at least partially mediate light-

induced circadian, neuroendocrine and neurobehavioral responses (Panda et al., 2002; Lucas et 

al., 2003; Dkhissi-Benyahya et al., 2007). In contrast, when both melanopsin is knocked out and 

the rods and cones are compromised, animals lose all visual and nonvisual photoreceptive 

functions of the eye (Hattar et al., 2003; Panda et al., 2003). Further, cellular recording studies in 

nonhuman primate retinas have demonstrated that rod and cone cells can directly activate 

ipRGCs (Dacey et al., 2005). Data from human studies suggest that the visual rods and cones 

may provide input to the SCN (Hebert et al., 2002; Figueiro et al., 2004; Jasser et al., 2006; 

Revell and Skene, 2007).  It is important to recognize that despite rapid experimental progress on 

ipRGC physiology, it is currently unknown how these newly discovered photoreceptors work 

with the classical visual photoreceptors in transducing light in the dynamic, complex 

polychromatic environments where humans carry out their daily activities. 
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 Importantly, in working with short wavelengths such as 420 nm, there is the potential for 

significant radiometric measurement error (American National Standards Institute and 

Illuminating Engineering Society of North America 2001). Special care is required in calibrating 

and benchmarking meters for accurately quantifying short wavelength visible light. Further, it is 

critical that the measured light stimuli represent the stimuli reaching the relevant photopigments.  

Human factors that can modify the measured stimulus include head and eye motion, squinting 

and eye closure, pupillary reflexes, and ocular media light transduction (Brainard et al., 1997).  

Most of these factors are controlled in the exposure techniques reported here.  In ocular media 

light transmission, the cornea and aqueous and vitreous humors normally transmit nearly 100% 

of visible wavelengths to the retina.  In contrast, as the human lens ages, it develops pigmentation 

that attenuates shorter visible wavelength transmission (Brainard et al., 1997; Pokorny et al., 

1987).  In this study, restricting the age of volunteers to 18-30 years partially controlled this 

factor.  Measurements of transmittance of 36 postmortem human lenses in this age range showed 

relatively even transmission from 440 to 600 nm.  Compared to lens transmission at 460 nm, 

however, there was a mean 45% reduction in transmission at 420 nm (Brainard et al., 1997).  

Thus, measured corneal light irradiances at 420 nm were adjusted to compensate for this reduced 

transmission.  Such adjustments are advisable for all studies using short wavelength visible light.  

One study that used 456 nm light, showed reduced melatonin suppression in older versus 

younger women (mean ages 57 ± 5 and 24 ± 3 years) suggesting that the sensitivity loss was 

likely due to age-related changes in subjects’ lenses (Herljevic et al., 2005).  

 Photobiological hazards such as infrared and ultraviolet cataract, photokeratitis, 

photoretinitis, and ultraviolet erythema have been identified relative to overexposure of the skin 

and eyes to the ultraviolet, visible and infrared spectra.  Whether using short wavelength light 

experimentally or for pragmatic purposes, it is important to verify that exposures fall within 
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established national and international safety limits (CIE, 2002; American Conference of 

Governmental Industrial Hygienists (ACGIH), 2006).  The short wavelength stimuli used in this 

study were well within the established ocular safety limits. Although the ACGIH standards are 

updated yearly based on the current published literature, some investigators debate if these 

standards are sufficiently stringent. 

 A wealth of data published in the past 25 years have demonstrated that light can be a 

potent biological, behavioral, and therapeutic stimulus in humans (CIE, 2004; CIE, 2006).  The 

data presented here extend our understanding of the wavelength sensitivity of the photoreceptor 

system that serves as the input system for non-visual, neurobehavioral regulation in humans. 

Industrialized societies employ light extensively in both public and private buildings to support 

vision, visual comfort, and aesthetic appreciation within these environments. Since light is also a 

potent regulator of human circadian and neuroendocrine physiology and different photoreceptive 

systems mediate visual and neurobehavioral responses, future lighting strategies will need to 

provide illumination for human neurobehavioral regulation as well as vision. Collectively, 

lighting manufacturers, lighting designers and architectural engineers have opened the door to 

understanding this physiology and are considering the development of applications stemming 

from these discoveries (CIE, 2004; CIE, 2006).  Indeed, the aerospace community is exploring 

how lighting can be used to support vision, circadian regulation and alertness of astronauts in 

advanced human environments such as the International Space Station and the planned Lunar 

habitat (Dijk et al., 2001; Gronfier et al., 2007).  
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Figure Legends  

 Figure 1:  In this graph bars represent group mean + SEM  melatonin values (N=8) before 

and after monochromatic light exposure at 420 nm. ANOVA and post-hoc Fisher PLSD tests 

demonstrated which retinal light intensities significantly suppressed melatonin.  

 Figure 2:  This figure demonstrates the fitted fluence-response curve for retinal irradiance 

photon density and % control-adjusted melatonin suppression on a semilog scale (N=8). Each 

data point represents one group mean ± SEM. The curve is consistent with the eight fluence-

response curves for melatonin suppression with monochromatic light between 440 to 600 nm 

(Brainard et al., 2001).  

 Figure 3: The bars represent group mean + SEM values relative to an equal photon dose 

of 1.21 x 10
13 

photons/cm
2
 of retinal irradiance. These data show that the 460 nm % control-

adjusted plasma melatonin suppression is significantly stronger than that for 420 nm.  
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